ARMA模型作为GARCH模型均值方程
时间: 2023-11-16 15:20:13 浏览: 182
股票收益率预测及风险与收益关系研究―――基于ARMA-GARCH模型和高频数据 (2013年)
的基础,是一种常用的时间序列分析方法。ARMA模型是由自回归(AR)和移动平均(MA)模型组成的,其模型形式为:
$$
y_t=\alpha_0+\sum_{i=1}^{p}\alpha_iy_{t-i}+\sum_{j=1}^{q}\beta_j\epsilon_{t-j}+\epsilon_t
$$
其中,$y_t$表示时间序列,$\epsilon_t$表示误差项,$p$和$q$分别表示自回归项和移动平均项的阶数,$\alpha_0,\alpha_i,\beta_j$是模型的参数。
ARMA模型的建立基于两个假设:一是时间序列的平稳性,即均值和方差不随时间变化;二是时间序列的自相关性和随机性,即时间序列中每个数据点与其前面的数据点和随机误差项都有关系。
GARCH模型是ARMA模型的扩展,它是一种用于建模时间序列波动率的方法。GARCH模型的基本形式为:
$$
\sigma_t^2=\omega+\sum_{i=1}^{p}\alpha_i\epsilon_{t-i}^2+\sum_{j=1}^{q}\beta_j\sigma_{t-j}^2
$$
其中,$\sigma_t^2$表示时间序列$t$时刻的方差,$\omega$是一个常数,$p$和$q$分别表示自回归项和移动平均项的阶数,$\alpha_i$和$\beta_j$是模型的参数,$\epsilon_{t-i}$表示$t-i$时刻的误差项。
GARCH模型的建立基于两个假设:一是时间序列的波动率是随时间变化的,即存在波动率聚集效应;二是波动率的变化受到历史波动率和误差项的影响。
阅读全文