Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 34.00 MiB (GPU 0; 9.77 GiB total capacity; 8.26 GiB already allocated; 22.69 MiB free; 8.40 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
时间: 2024-02-17 07:15:18 浏览: 1913
这个错误提示是由于在运行PyTorch反向传播时,GPU的内存不足而导致的。提示中建议您尝试增加GPU内存或者调整PyTorch的内存管理策略来避免这种情况。具体来说,您可以尝试以下操作:
1. 减少模型的批处理大小,以减少每次传输的数据量,从而减少GPU内存的使用量。
2. 禁用梯度计算,在不需要梯度的部分代码中使用 with torch.no_grad(): 来减少计算图的构建和内存占用。
3. 将PyTorch的内存分配策略改为使用“缓存分配器”,可以通过设置环境变量 PYTORCH_CUDA_ALLOC_CONF 来实现。具体来说,您可以将该变量设置为“使用缓存分配器,并且每次分配内存的大小不超过指定的大小”,例如:export PYTORCH_CUDA_ALLOC_CONF=0:4096。这将使用缓存分配器来避免内存碎片,并且每次分配内存的大小不超过4MB。
希望以上方法能够帮助您解决问题。
相关问题
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
Variable._execution_engine.run_backward(是一个函数调用,用于运行反向传播过程的C引擎。它在计算图中执行反向传播,并计算梯度。根据引用中的错误信息,出现这个错误的原因是在计算图中的某个张量的梯度要求不需要梯度,但却尝试计算它的梯度。根据引用和引用[4],解决这个问题的方法是确保在构建Variable时,将requires_grad参数设置为True,以便对该变量计算梯度。根据引用,可以使用torch.autograd.Variable来构建Variable,并设置requires_grad=True。这样,就可以解决这个问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
in backward Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
根据提供的引用内容,报错信息是由于神经网络最后的全连接层的神经元数量和标签数量不匹配导致的。具体来说,你有41个类别,但是全连接层只有40个神经元,所以出现了这个错误。解决方法是确保全连接层的神经元数量与标签数量相匹配。
另外,引用中提到了通过修改train.py文件中的init_seeds函数来解决报错。你可以尝试修改该函数,将参数deterministic设置为True,以确保训练过程的随机性可重复。
以下是一个关于backward函数的例子:
```python
import torch
# 创建一个张量
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
# 定义一个计算图
y = x**2 + 2*x + 1
# 反向传播
y.backward()
# 打印梯度
print(x.grad) # 输出:tensor([4., 6., 8.])
```
阅读全文