python 读取csv文件 用Bagging和Random Forest组合分类算法对数据集进行分类
时间: 2024-01-21 12:16:21 浏览: 99
新建文件夹 (2)_集成学习_train_Adaboost数据集_
5星 · 资源好评率100%
首先,你需要导入所需的库和模块:
```python
import pandas as pd
from sklearn import model_selection
from sklearn.ensemble import RandomForestClassifier, BaggingClassifier
from sklearn.metrics import accuracy_score
```
然后,读取csv文件并将其转换为Pandas DataFrame:
```python
data = pd.read_csv('your_file.csv')
```
接下来,将数据集拆分为训练集和测试集:
```python
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=42)
```
现在,你可以定义随机森林和装袋分类器:
```python
rf = RandomForestClassifier(n_estimators=10, random_state=42)
bc = BaggingClassifier(base_estimator=rf, n_estimators=10, random_state=42)
```
注意,这里我们将随机森林作为基本分类器,并使用装袋分类器来组合多个随机森林模型。
接下来,训练模型:
```python
bc.fit(X_train, y_train)
```
最后,使用测试集评估模型性能:
```python
y_pred = bc.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
这就是使用Python读取CSV文件并使用Bagging和Random Forest组合分类算法进行分类的完整代码。
阅读全文