python代码怎么部署到C++ TENSORTRT
时间: 2023-11-07 09:05:02 浏览: 267
要将Python代码部署到C++ TensorRT,需要进行以下步骤:
1. 将Python模型转换为TensorRT引擎:使用TensorRT的Python API将Python模型转换为TensorRT引擎。这个过程可以在Python中完成。
2. 将TensorRT引擎序列化为文件:使用TensorRT的C++ API将TensorRT引擎序列化为文件。这个过程需要在C++中完成。
3. 在C++中加载TensorRT引擎:使用TensorRT的C++ API在C++中加载TensorRT引擎。
4. 在C++中推理:使用TensorRT的C++ API在C++中进行推理。
以下是一个简单的示例:
```python
import tensorrt as trt
# 转换Python模型为TensorRT引擎
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30
with open('model.onnx', 'rb') as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
# 将TensorRT引擎序列化为文件
with open('model.trt', 'wb') as f:
f.write(engine.serialize())
```
```c++
#include <iostream>
#include <fstream>
#include <NvInfer.h>
int main()
{
// 加载TensorRT引擎
std::ifstream engine_file("model.trt", std::ios::binary);
engine_file.seekg(0, std::ios::end);
const size_t engine_size = engine_file.tellg();
engine_file.seekg(0, std::ios::beg);
std::vector<char> engine_data(engine_size);
engine_file.read(engine_data.data(), engine_size);
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(nvinfer1::ILogger::Severity::kWARNING);
nvinfer1::ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_size, nullptr);
// 推理
nvinfer1::IExecutionContext* context = engine->createExecutionContext();
float input_data[] = {1.0, 2.0, 3.0};
float output_data[3];
cudaMallocManaged(&input_data_dev, 3 * sizeof(float));
cudaMallocManaged(&output_data_dev, 3 * sizeof(float));
cudaMemcpy(input_data_dev, input_data, 3 * sizeof(float), cudaMemcpyHostToDevice);
void* bindings[] = {input_data_dev, output_data_dev};
context->execute(1, bindings);
cudaMemcpy(output_data, output_data_dev, 3 * sizeof(float), cudaMemcpyDeviceToHost);
std::cout << output_data[0] << ", " << output_data[1] << ", " << output_data[2] << std::endl;
// 释放资源
cudaFree(input_data_dev);
cudaFree(output_data_dev);
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}
```
阅读全文