SIFT图像配准算法代码
时间: 2023-09-09 21:13:06 浏览: 107
SIFT(尺度不变特征变换)是一种用于图像配准的算法,其主要思想是提取图像中的局部特征,通过匹配这些特征来实现图像配准。以下是SIFT图像配准算法的代码示例:
```python
import cv2
# 读取待匹配的图像
img1 = cv2.imread('img1.jpg', 0)
img2 = cv2.imread('img2.jpg', 0)
# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()
# 提取特征点和特征描述符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 创建FLANN匹配器
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 匹配特征点
matches = flann.knnMatch(des1, des2, k=2)
# 选择好的匹配点
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
# 获取匹配点的坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
# 使用RANSAC算法进行图像配准
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 获取待匹配图像的高和宽
h, w = img1.shape
# 将待匹配图像的四个角转换为在目标图像中的坐标
pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
# 在目标图像中画出匹配区域
img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
# 显示匹配结果
cv2.imshow("Image 1", img1)
cv2.imshow("Image 2", img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码首先使用SIFT算法提取图像中的局部特征,然后使用FLANN匹配器进行特征点的匹配,接着使用RANSAC算法进行图像配准。最后,将待匹配图像的四个角转换为在目标图像中的坐标,并在目标图像中画出匹配区域。
阅读全文