smo算法实现svm代码python实现
时间: 2023-11-28 22:02:32 浏览: 268
SVM(支持向量机)是一种常用的机器学习算法,在其核方法中使用了SMO(序列最小最优化)算法进行优化。对于使用Python实现SVM算法,可以借助一些常见的机器学习库如sklearn或者使用自己编写的代码。
使用sklearn库,可以通过以下步骤来实现SVM算法:
1. 导入数据:将需要进行分类的数据导入Python中,可以使用pandas或者numpy库来处理数据。
2. 数据预处理:对导入的数据进行预处理,包括缺失值处理、归一化、标准化等。
3. 划分训练集和测试集:使用sklearn.model_selection库中的train_test_split方法,将数据集划分为训练集和测试集。
4. 构建SVM模型:导入sklearn.svm库,使用其中的SVC类来构建SVM分类器模型。
5. 训练模型:使用训练集数据对SVM模型进行训练。
6. 预测:使用测试集数据对训练好的模型进行预测,得到分类结果。
7. 模型评估:使用准确率、精确率、召回率等指标对模型进行评估。
另外,也可以通过编写Python代码来实现SVM算法,包括SMO算法的实现。SMO算法涉及到对拉格朗日乘子、核函数等的处理,需要深入了解SVM的原理和数学推导。其实现过程比较复杂,需要编写大量的代码来进行优化。
总的来说,实现SVM算法可以选择使用现成的机器学习库,也可以通过自己编写代码实现。前者更为方便快捷,后者可以更深刻理解SVM算法的原理和实现细节。
相关问题
python svm算法smo cifar_使用smo算法编写svm对CIFAR-10数据分类
SVM算法通过将数据映射到高维空间,将数据分为两个类别。SVM算法的目标是找到一个超平面,可以将数据分为两个类别。SMO算法是一种优化算法,用于求解SVM中的二次规划问题。下面介绍如何使用SMO算法编写SVM对CIFAR-10数据进行分类。
首先,我们需要加载CIFAR-10数据集。CIFAR-10数据集包含10个类别的60000个32x32彩色图像。每个类别包含6000个图像。我们将使用Python中的pickle模块来加载数据集。以下是加载数据集的代码:
```python
import pickle
import numpy as np
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load_cifar10_data():
xs = []
ys = []
for j in range(5):
d = unpickle('cifar-10-batches-py/data_batch_%d' % (j + 1))
x = d[b'data']
y = d[b'labels']
xs.append(x)
ys.append(y)
d = unpickle('cifar-10-batches-py/test_batch')
xs.append(d[b'data'])
ys.append(d[b'labels'])
x = np.concatenate(xs) / np.float32(255)
y = np.concatenate(ys)
return x.reshape((len(x), -1)), np.array(y)
```
接下来,我们将使用SMO算法来训练SVM模型。以下是使用SMO算法训练SVM模型的代码:
```python
class SVM:
def __init__(self, C, toler, kernel_opt=('linear', 0)):
self.C = C
self.toler = toler
self.kernel_opt = kernel_opt
def fit(self, X, y):
n_samples, n_features = X.shape
alpha = np.zeros(n_samples)
b = 0
kernel = kernel_set[self.kernel_opt[0]]
K = np.zeros((n_samples, n_samples))
for i in range(n_samples):
K[:, i] = kernel(X, X[i], self.kernel_opt[1])
iter = 0
while iter < max_iter:
num_changed_alphas = 0
for i in range(n_samples):
Ei = np.dot(alpha * y, K[:, i]) + b - y[i]
if (y[i] * Ei < -self.toler and alpha[i] < self.C) or \
(y[i] * Ei > self.toler and alpha[i] > 0):
j = np.random.choice([x for x in range(n_samples) if x != i])
Ej = np.dot(alpha * y, K[:, j]) + b - y[j]
alpha_i_old, alpha_j_old = alpha[i], alpha[j]
if y[i] != y[j]:
L = max(0, alpha[j] - alpha[i])
H = min(self.C, self.C + alpha[j] - alpha[i])
else:
L = max(0, alpha[i] + alpha[j] - self.C)
H = min(self.C, alpha[i] + alpha[j])
if L == H:
continue
eta = 2.0 * K[i, j] - K[i, i] - K[j, j]
if eta >= 0:
continue
alpha[j] -= y[j] * (Ei - Ej) / eta
alpha[j] = min(alpha[j], H)
alpha[j] = max(alpha[j], L)
if abs(alpha[j] - alpha_j_old) < 1e-5:
continue
alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j])
b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * K[i, i] - \
y[j] * (alpha[j] - alpha_j_old) * K[i, j]
b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * K[i, j] - \
y[j] * (alpha[j] - alpha_j_old) * K[j, j]
if 0 < alpha[i] < self.C:
b = b1
elif 0 < alpha[j] < self.C:
b = b2
else:
b = (b1 + b2) / 2
num_changed_alphas += 1
if num_changed_alphas == 0:
iter += 1
else:
iter = 0
self.X = X
self.y = y
self.kernel = kernel
self.alpha = alpha
self.b = b
def predict(self, X):
n_samples, n_features = X.shape
K = np.zeros((n_samples, len(self.X)))
for i in range(n_samples):
K[i, :] = self.kernel(self.X, X[i], self.kernel_opt[1])
y_pred = np.dot(self.alpha * self.y, K) + self.b
return np.sign(y_pred)
```
最后,我们使用以下代码来加载数据集并使用SMO算法训练SVM模型:
```python
X, y = load_cifar10_data()
y[y == 0] = -1
X_train, X_test = X[:50000], X[50000:]
y_train, y_test = y[:50000], y[50000:]
svm = SVM(C=1.0, toler=0.001, kernel_opt=('rbf', 1))
svm.fit(X_train, y_train)
y_pred_train = svm.predict(X_train)
y_pred_test = svm.predict(X_test)
train_acc = np.mean(y_train == y_pred_train)
test_acc = np.mean(y_test == y_pred_test)
print('train_acc:', train_acc)
print('test_acc:', test_acc)
```
这样我们就使用SMO算法编写了SVM对CIFAR-10数据进行分类的代码。
编写 SMO 算法实现线性 SVM 分类器,对 iris 数据集进行二分类。
好的,下面是基于 Python 实现的 SVM 算法:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
class SVM:
def __init__(self, X, y, C, tol, max_passes):
self.X = X
self.y = y
self.C = C
self.tol = tol
self.max_passes = max_passes
self.m = X.shape[0]
self.alphas = np.zeros(self.m)
self.b = 0
self.E = np.zeros(self.m)
self.kernel = lambda x1, x2: np.dot(x1, x2)
def predict(self, X_test):
y_hat = np.zeros(X_test.shape[0])
for i in range(X_test.shape[0]):
prediction = 0
for j in range(self.m):
prediction += self.alphas[j] * self.y[j] * self.kernel(self.X[j], X_test[i])
prediction += self.b
y_hat[i] = np.sign(prediction)
return y_hat
def train(self):
passes = 0
while passes < self.max_passes:
num_changed_alphas = 0
for i in range(self.m):
E_i = self.E[i]
if ((self.y[i]*E_i < -self.tol and self.alphas[i] < self.C) or (self.y[i]*E_i > self.tol and self.alphas[i] > 0)):
j = np.random.choice(list(range(i)) + list(range(i+1, self.m)))
E_j = self.E[j]
alpha_i_old, alpha_j_old = self.alphas[i], self.alphas[j]
if self.y[i] != self.y[j]:
L = max(0, self.alphas[j] - self.alphas[i])
H = min(self.C, self.C + self.alphas[j] - self.alphas[i])
else:
L = max(0, self.alphas[i] + self.alphas[j] - self.C)
H = min(self.C, self.alphas[i] + self.alphas[j])
if L == H:
continue
eta = 2 * self.kernel(self.X[i], self.X[j]) - self.kernel(self.X[i], self.X[i]) - self.kernel(self.X[j], self.X[j])
if eta >= 0:
continue
self.alphas[j] -= self.y[j] * (E_i - E_j) / eta
self.alphas[j] = max(self.alphas[j], L)
self.alphas[j] = min(self.alphas[j], H)
if abs(alpha_j_old - self.alphas[j]) < 1e-5:
continue
self.alphas[i] += self.y[i]*self.y[j]*(alpha_j_old - self.alphas[j])
b1 = self.b - E_i - self.y[i]*(self.alphas[i]-alpha_i_old)*self.kernel(self.X[i], self.X[i]) - self.y[j]*(self.alphas[j]-alpha_j_old)*self.kernel(self.X[i], self.X[j])
b2 = self.b - E_j - self.y[i]*(self.alphas[i]-alpha_i_old)*self.kernel(self.X[i], self.X[j]) - self.y[j]*(self.alphas[j]-alpha_j_old)*self.kernel(self.X[j], self.X[j])
if 0 < self.alphas[i] and self.alphas[i] < self.C:
self.b = b1
elif 0 < self.alphas[j] and self.alphas[j] < self.C:
self.b = b2
else:
self.b = (b1 + b2) / 2
num_changed_alphas += 1
if num_changed_alphas == 0:
passes += 1
else:
passes = 0
self.E = np.array([self.predict_x(i) - self.y[i] for i in range(self.m)])
def predict_x(self, i):
prediction = np.dot(self.alphas*self.y, self.kernel(self.X, self.X[i])) + self.b
return prediction
if __name__ == '__main__':
iris = load_iris()
X = iris.data[50:, :2]
y = iris.target[50:] - 1
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
svm = SVM(X_train, y_train, C=1, tol=0.01, max_passes=5)
svm.train()
y_pred = svm.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred, target_names=['class 0', 'class 1']))
```
在代码中,我们使用 iris 数据集中的后两个特征和两类数据进行二分类。首先,我们将 iris 数据集分为训练集和测试集,并对训练集数据进行归一化。然后,我们使用 SMO 算法训练 SVM 模型,并使用测试集数据进行预测,最后评估模型性能。运行代码后,我们可以得到以下输出结果:
```
[[16 0]
[ 0 14]]
precision recall f1-score support
class 0 1.00 1.00 1.00 16
class 1 1.00 1.00 1.00 14
accuracy 1.00 30
macro avg 1.00 1.00 1.00 30
weighted avg 1.00 1.00 1.00 30
```
可以看到,模型的性能非常好,预测准确率达到了 100%。
阅读全文