使用SMO算法编写了SVM对iris数据进行分类的代码,其中iris数据集由本地txt文档导入
时间: 2023-12-29 13:02:03 浏览: 76
以下是使用SMO算法编写SVM对iris数据进行分类的Python代码:
```python
import numpy as np
def load_data(filename):
data = []
label = []
with open(filename, 'r') as f:
for line in f.readlines():
line = line.strip().split(',')
data.append([float(x) for x in line[:-1]])
label.append(int(line[-1]))
return np.array(data), np.array(label)
def select_j(i, m):
j = i
while j == i:
j = np.random.randint(0, m)
return j
def clip_alpha(alpha, H, L):
if alpha > H:
alpha = H
if alpha < L:
alpha = L
return alpha
def smo_simple(data, label, C, toler, max_iter):
m, n = data.shape
alpha = np.zeros(m)
b = 0
iter = 0
while iter < max_iter:
alpha_pairs_changed = 0
for i in range(m):
f_xi = float(np.dot((alpha*label).T, np.dot(data, data[i, :].T))) + b
error_i = f_xi - float(label[i])
if (label[i]*error_i < -toler and alpha[i] < C) or (label[i]*error_i > toler and alpha[i] > 0):
j = select_j(i, m)
f_xj = float(np.dot((alpha*label).T, np.dot(data, data[j, :].T))) + b
error_j = f_xj - float(label[j])
alpha_i_old, alpha_j_old = alpha[i], alpha[j]
if label[i] != label[j]:
L = max(0, alpha[j] - alpha[i])
H = min(C, C + alpha[j] - alpha[i])
else:
L = max(0, alpha[i] + alpha[j] - C)
H = min(C, alpha[i] + alpha[j])
if L == H:
continue
eta = 2.0 * np.dot(data[i, :], data[j, :].T) - np.dot(data[i, :], data[i, :].T) - np.dot(data[j, :], data[j, :].T)
if eta >= 0:
continue
alpha[j] -= label[j] * (error_i - error_j) / eta
alpha[j] = clip_alpha(alpha[j], H, L)
if abs(alpha[j] - alpha_j_old) < 1e-5:
continue
alpha[i] += label[i] * label[j] * (alpha_j_old - alpha[j])
b1 = b - error_i - label[i] * (alpha[i] - alpha_i_old) * np.dot(data[i, :], data[i, :].T) - label[j] * (alpha[j] - alpha_j_old) * np.dot(data[i, :], data[j, :].T)
b2 = b - error_j - label[i] * (alpha[i] - alpha_i_old) * np.dot(data[i, :], data[j, :].T) - label[j] * (alpha[j] - alpha_j_old) * np.dot(data[j, :], data[j, :].T)
if 0 < alpha[i] < C:
b = b1
elif 0 < alpha[j] < C:
b = b2
else:
b = (b1 + b2) / 2.0
alpha_pairs_changed += 1
if alpha_pairs_changed == 0:
iter += 1
else:
iter = 0
return alpha, b
def svm(data, label, C, toler, max_iter):
alpha, b = smo_simple(data, label, C, toler, max_iter)
w = np.dot((alpha*label).T, data)
return w, b
if __name__ == '__main__':
data, label = load_data('iris.txt')
w, b = svm(data, label, 0.6, 0.001, 40)
print('w:', w)
print('b:', b)
```
其中,load_data函数用于从本地txt文件中加载iris数据集。select_j函数用于随机选择第二个alpha值的下标。clip_alpha函数用于调整alpha值使其满足KKT条件。smo_simple函数用于实现SMO算法。svm函数是对smo_simple函数的封装,返回计算出的权重w和偏移量b。最后,在main函数中调用svm函数进行训练并输出结果。
阅读全文