移动机器人模糊控制算法
时间: 2023-12-14 07:34:50 浏览: 146
移动机器人模糊控制算法是一种基于模糊逻辑的控制方法,它可以使机器人在不确定和复杂的环境中实现自主导航和避障。下面是一个简单的移动机器人模糊控制算法的示例:
```python
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
# 定义输入变量
distance = ctrl.Antecedent(np.arange(0, 101, 1), 'distance')
angle = ctrl.Antecedent(np.arange(-90, 91, 1), 'angle')
# 定义输出变量
velocity = ctrl.Consequent(np.arange(0, 11, 1), 'velocity')
direction = ctrl.Consequent(np.arange(-90, 91, 1), 'direction')
# 定义模糊集合
distance['near'] = fuzz.trimf(distance.universe, [0, 0, 50])
distance['far'] = fuzz.trimf(distance.universe, [0, 50, 100])
angle['left'] = fuzz.trimf(angle.universe, [-90, -90, 0])
angle['right'] = fuzz.trimf(angle.universe, [0, 90, 90])
velocity['slow'] = fuzz.trimf(velocity.universe, [0, 0, 5])
velocity['fast'] = fuzz.trimf(velocity.universe, [0, 5, 10])
direction['left'] = fuzz.trimf(direction.universe, [-90, -90, 0])
direction['right'] = fuzz.trimf(direction.universe, [0, 90, 90])
# 定义规则
rule1 = ctrl.Rule(distance['near'] & angle['left'], (velocity['slow'], direction['right']))
rule2 = ctrl.Rule(distance['near'] & angle['right'], (velocity['slow'], direction['left']))
rule3 = ctrl.Rule(distance['far'] & angle['left'], (velocity['fast'], direction['left']))
rule4 = ctrl.Rule(distance['far'] & angle['right'], (velocity['fast'], direction['right']))
# 定义控制系统
velocity_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4])
velocity_sim = ctrl.ControlSystemSimulation(velocity_ctrl)
# 输入距离和角度
velocity_sim.input['distance'] = 30
velocity_sim.input['angle'] = -45
# 运行控制系统
velocity_sim.compute()
# 输出速度和方向
print(velocity_sim.output['velocity'])
print(velocity_sim.output['direction'])
```
上述代码中,我们定义了两个输入变量(distance和angle)和两个输出变量(velocity和direction),并使用模糊集合来描述它们的取值范围。然后,我们定义了一些规则来控制机器人的速度和方向,例如当机器人距离障碍物较近且偏向左侧时,机器人应该减速并向右转向。最后,我们使用控制系统模拟器来运行控制系统,并输出机器人的速度和方向。
阅读全文