解释Python代码:date_update=(datetime.datetime(2023,1,31,00,00,00) -time_time_result.iloc[j,2]).days
时间: 2024-05-17 22:15:02 浏览: 133
这行Python代码的作用是计算两个日期之间的天数差。具体来说,它用 datetime.datetime() 函数创建一个日期对象,表示2023年1月31日00:00:00。然后,用 time_time_result.iloc[j,2] 获取一个 pandas DataFrame 中的日期值,并将其与前面创建的日期对象相减,得到一个时间差值。最后,调用 .days 属性获取这个时间差值中的天数部分,并将其赋值给变量 date_update。
需要注意的是,这里的日期对象和时间差值都是通过 Python 标准库中的 datetime 模块来处理的。此外,前面提到的 pandas DataFrame 中的日期值也需要符合 datetime 模块的格式。
相关问题
import random import time import csv import os from datetime import datetime users={} for i in range(4): users_id=random.randint(0,10) users_score=random.randint(-8000,8000) users[users_id]=users_score with open('updates.csv','a')as f: csv_re=csv.writer(f) csv_re.writerow([users_id,users_score]) print(f'积分变动:{users_id} {users_score}') def aaa(): global users_id global users_score with open('updates.csv','r')as f: csv_re=csv.reader(f) for row in csv_re: users_id,users_score=row users_id=int(users_id) users_score=int(users_score) users[users_id]+=users_score if users[users_id]<0: users[users_id]=0 return users def bbb(): with open('Candidates.csv','w')as f: csv_re=csv.writer(f) csv_re.writerow([users_id,users_score]) def ccc(): global prize_winner weight=[] prize_winner=[] for uid,users_score in users.items(): if users_score >=3000: weight.append(3) elif users_score >=2000: weight.append(2) elif users_score >=1000: weight.append(1) else: weight.append(0) winner1=random.choices(list(users.keys()),weight) prize_winner.append(winner1[0]) print(f'一等奖:{prize_winner[0]}') def ddd(): winner2 = random.sample(list(users.keys()),2) prize_winner.append(winner2[0][1]) print(f'二等奖:{prize_winner[1]}') del users[prize_winner[1]] def timer(): nowtime=datetime.now() while True: if nowtime.weekday()==2 and nowtime.hour==22 and 0<=nowtime.minute<=60: return True else: return False for i in range(3): while not timer(): time.sleep(60) print(f'第{i+1}轮抽奖开始:') aaa() bbb() ccc() ddd() time.sleep(12) today_date_str=datetime.now().strftime('%Y_%m_%d') os.rename('updates.csv','{}.csv'.format(today_date_str))修改此段代码并且写出新代码
修改建议:
1. 代码缩进不规范,需要统一缩进方式;
2. 函数名不够清晰,需要更改为更能表示其功能的名称;
3. 函数之间没有明确的调用关系,需要添加调用关系。
新代码如下:
```python
import random
import time
import csv
import os
from datetime import datetime
# 初始化用户积分信息
users = {}
for i in range(4):
users_id = random.randint(0, 10)
users_score = random.randint(-8000, 8000)
users[users_id] = users_score
with open('updates.csv', 'a') as f:
csv_re = csv.writer(f)
csv_re.writerow([users_id, users_score])
print(f'积分变动:{users_id} {users_score}')
def update_scores():
global users_id
global users_score
with open('updates.csv', 'r') as f:
csv_re = csv.reader(f)
for row in csv_re:
users_id, users_score = row
users_id = int(users_id)
users_score = int(users_score)
users[users_id] += users_score
if users[users_id] < 0:
users[users_id] = 0
return users
def write_candidates():
with open('Candidates.csv', 'w') as f:
csv_re = csv.writer(f)
for uid, users_score in users.items():
csv_re.writerow([uid, users_score])
def draw_first_prize():
weight = []
for uid, users_score in users.items():
if users_score >= 3000:
weight.append(3)
elif users_score >= 2000:
weight.append(2)
elif users_score >= 1000:
weight.append(1)
else:
weight.append(0)
winner1 = random.choices(list(users.keys()), weight)
prize_winner = [winner1[0]]
print(f'一等奖:{prize_winner[0]}')
return prize_winner
def draw_second_prize(prize_winner):
winner2 = random.sample(list(users.keys()), 2)
prize_winner.append(winner2[0])
print(f'二等奖:{prize_winner[1]}')
del users[prize_winner[1]]
def is_draw_time():
nowtime = datetime.now()
if nowtime.weekday() == 2 and nowtime.hour == 22 and 0 <= nowtime.minute <= 60:
return True
else:
return False
for i in range(3):
while not is_draw_time():
time.sleep(60)
print(f'第{i+1}轮抽奖开始:')
update_scores()
write_candidates()
prize_winner = draw_first_prize()
draw_second_prize(prize_winner)
time.sleep(12)
today_date_str = datetime.now().strftime('%Y_%m_%d')
os.rename('updates.csv', '{}.csv'.format(today_date_str))
```
新代码修改了函数名,添加了调用关系,使得代码更加清晰易懂。同时,修改了代码缩进方式,使得代码风格更加规范。
import pandas as pd import pyecharts.options as opts from pyecharts.charts import Bar, Line from pyecharts.render import make_snapshot from snapshot_selenium import snapshot as driver x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] # 导入数据 df = pd.read_csv('E:/pythonProject1/第8章实验数据/beijing_AQI_2018.csv') attr = df['Date'].tolist() v1 = df['AQI'].tolist() v2=df['PM'].tolist() # 对AQI进行求平均值 data={'Date':pd.to_datetime(attr),'AQI':v1} df1 = pd.DataFrame(data) total=df1['AQI'].groupby([df1['Date'].dt.strftime('%m')]).mean() d1=total.tolist() y1=[] for i in d1: y1.append(int(i)) # print(d1) # print(y1) # 对PM2.5求平均值 data1={'Date':pd.to_datetime(attr),'PM':v2} df2 = pd.DataFrame(data1) total1=df2['PM'].groupby([df2['Date'].dt.strftime('%m')]).mean() d2=total1.tolist() y2=[] for i in d2: y2.append(int(i)) # print(d2) bar = ( Bar() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="PM2.5", y_axis=y2, label_opts=opts.LabelOpts(is_show=False), color="#5793f3" ) .extend_axis( yaxis=opts.AxisOpts( name="平均浓度", type_="value", min_=0, max_=150, interval=30, axislabel_opts=opts.LabelOpts(formatter="{value}"), ) ) .set_global_opts( tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="cross" ), xaxis_opts=opts.AxisOpts( type_="category", axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), ), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="AQI", yaxis_index=1, y_axis=y1, label_opts=opts.LabelOpts(is_show=False), color='rgb(192,0, 0,0.2)' ) ) bar.overlap(line).render("five.html") bar.options.update(backgroundColor="#F7F7F7")
这段代码的功能是读取一个 csv 文件,分别计算 AQI 和 PM2.5 的每月平均值,并将它们分别用柱状图和折线图展示在同一个图表中。其中,柱状图表示 PM2.5,折线图表示 AQI,两者共用 x 轴(月份),而 y 轴分别是 PM2.5 的浓度和 AQI 的值。此外,折线图的 y 轴是右侧的另一个坐标轴。最后,将图表保存为 HTML 文件 five.html。
阅读全文