针对语音识别任务——10个数字的孤立词识别,分别使用GMM 和 HMM 建立对 0~9 十个数字的孤立词语音分类识别模型的代码python语言
时间: 2024-03-12 21:46:35 浏览: 197
基于Python实现孤立词语音识别【100010572】
5星 · 资源好评率100%
下面是使用GMM和HMM建立对10个数字的孤立词语音分类识别模型的Python代码示例:
1. 使用GMM进行特征建模和分类
```python
import numpy as np
import librosa
from sklearn.mixture import GaussianMixture
# 加载语音数据,提取MFCC特征
def extract_features(file_name):
y, sr = librosa.load(file_name)
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
return np.mean(mfccs, axis=1)
# 训练GMM模型
def train_gmm_model(features):
gmm = GaussianMixture(n_components=10, max_iter=200, covariance_type='diag', n_init=3)
gmm.fit(features)
return gmm
# 识别测试语音
def recognize_gmm(gmm_models, test_feature):
scores = []
for i in range(10):
score = gmm_models[i].score(test_feature.reshape(1, -1))
scores.append(score)
return np.argmax(scores)
# 加载训练数据,训练GMM模型
def train_gmm():
gmm_models = []
for i in range(10):
file_name = 'digit_' + str(i) + '.wav'
features = extract_features(file_name)
gmm = train_gmm_model(features)
gmm_models.append(gmm)
return gmm_models
# 测试模型
def test_gmm(gmm_models):
correct = 0
total = 0
for i in range(10):
for j in range(10):
file_name = 'digit_' + str(i) + '_' + str(j) + '.wav'
features = extract_features(file_name)
label = recognize_gmm(gmm_models, features)
if label == i:
correct += 1
total += 1
print('Accuracy:', correct / total)
# 训练和测试GMM模型
gmm_models = train_gmm()
test_gmm(gmm_models)
```
2. 使用HMM进行分类
```python
import numpy as np
import librosa
from hmmlearn import hmm
# 加载语音数据,提取MFCC特征
def extract_features(file_name):
y, sr = librosa.load(file_name)
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
return mfccs.T
# 训练HMM模型
def train_hmm_model(features):
model = hmm.GaussianHMM(n_components=5, covariance_type='diag', n_iter=100)
model.fit(features)
return model
# 识别测试语音
def recognize_hmm(hmm_models, test_feature):
scores = []
for i in range(10):
score = hmm_models[i].score(test_feature)
scores.append(score)
return np.argmax(scores)
# 加载训练数据,训练HMM模型
def train_hmm():
hmm_models = []
for i in range(10):
file_name = 'digit_' + str(i) + '.wav'
features = extract_features(file_name)
model = train_hmm_model(features)
hmm_models.append(model)
return hmm_models
# 测试模型
def test_hmm(hmm_models):
correct = 0
total = 0
for i in range(10):
for j in range(10):
file_name = 'digit_' + str(i) + '_' + str(j) + '.wav'
features = extract_features(file_name)
label = recognize_hmm(hmm_models, features)
if label == i:
correct += 1
total += 1
print('Accuracy:', correct / total)
# 训练和测试HMM模型
hmm_models = train_hmm()
test_hmm(hmm_models)
```
以上是使用GMM和HMM进行10个数字的孤立词识别的Python代码示例,其中使用了librosa和sklearn库进行特征提取和GMM建模,使用了hmmlearn库进行HMM建模。
阅读全文