分析一下:var common_ops = { init:function(){ this.eventBind(); this.setMenuIconHighLight(); }, eventBind:function(){ $('.navbar-minimalize').click(function () { $("body").toggleClass("mini-navbar"); SmoothlyMenu(); }); $(window).bind("load resize scroll", function () { if (!$("body").hasClass('body-small')) { fix_height(); } }); }, setMenuIconHighLight:function(){ if( $("#side-menu li").size() < 1 ){ return; } var pathname = window.location.pathname; var nav_name = "default"; if( pathname.indexOf("/account") > -1 ){ nav_name = "account"; } if( pathname.indexOf("/food") > -1 ){ nav_name = "food"; } if( pathname.indexOf("/member") > -1 ){ nav_name = "member"; } if( pathname.indexOf("/finance") > -1 ){ nav_name = "finance"; } if( pathname.indexOf("/qrcode") > -1 ){ nav_name = "market"; } if( pathname.indexOf("/stat") > -1 ){ nav_name = "stat"; } if( nav_name == null ){ return; } $("#side-menu li."+nav_name).addClass("active"); }, alert:function( msg ,cb ){ layer.alert( msg,{ yes:function( index ){ if( typeof cb == "function" ){ cb(); } layer.close( index ); } }); }, confirm:function( msg,callback ){ callback = ( callback != undefined )?callback: { 'ok':null, 'cancel':null }; layer.confirm( msg , { btn: ['确定','取消'] //按钮 }, function( index ){ //确定事件 if( typeof callback.ok == "function" ){ callback.ok(); } layer.close( index ); }, function( index ){ //取消事件 if( typeof callback.cancel == "function" ){ callback.cancel(); } layer.close( index ); }); }, tip:function( msg,target ){ layer.tips( msg, target, { tips: [ 3, '#e5004f'] }); $('html, body').animate({ scrollTop: target.offset().top - 10 }, 100); }, buildUrl:function( path ,params ){ /链接管理是们艺术,buildUrl这里在static/js/user/login.js中调用/ var url = "" + path; var _paramUrl = ""; if( params ){ /json通过key取值然后用map循环/ _paramUrl = Object.keys( params ).map( function( k ){ return [ encodeURIComponent( k ),encodeURIComponent( params[ k ] ) ].join("="); }).join("&"); _paramUrl = "?" + _paramUrl; } return url + _paramUrl; }, buildPicUrl:function( img_key ){ var domain = $(".hidden_layout_wrap input[name=domain]").val(); var prefix_url = $(".hidden_layout_wrap input[name=prefix_url]").val(); return domain + prefix_url + img_key; } }; $(document).ready( function() { common_ops.init(); });

时间: 2024-05-01 10:20:01 浏览: 124
这段代码是一个名为"common_ops"的对象,其中包含了多个方法,用于实现一些常用的功能。其中init()方法用于初始化,调用了eventBind()方法和setMenuIconHighLight()方法,eventBind()方法用于绑定事件,包括点击事件和窗口大小变化事件等,setMenuIconHighLight()方法用于设置菜单图标高亮。其他方法包括alert()方法、confirm()方法、tip()方法、buildUrl()方法和buildPicUrl()方法,用于实现弹出提示框、确认框、提示信息、构建URL和构建图片URL等功能。整个代码看起来比较简洁,但是实现了很多常用功能,可以方便地被其他程序员调用。
相关问题

db_table_ops("get", "router", "select", "{}", function (data) { //按照index排序 var temp_value = data; temp_value.sort(function (a, b) { var index_a = 100000; var index_b = 100000; if (a.index != '' && a.index != null) { index_a = parseInt(a.index); } if (b.index != '' && b.index != null) { index_b = parseInt(b.index); } return (index_a - index_b); }); _this.router_table = temp_value; });

这也是一段 JavaScript 代码,它包含了一个名为 "db_table_ops" 的函数,该函数接受多个参数,包括字符串 "get"、"router"、"select"、一个表示查询条件的对象 "{}" 和一个回调函数。函数在执行时会从数据库中获取某个表格中符合条件的数据,并将获取到的数据存储到一个变量 "temp_value" 中。然后函数会对 "temp_value" 数组进行排序,排序的规则是按照每个数组元素的 "index" 属性进行升序排序(如果 "index" 属性为空或 null,则默认为 100000)。最后,函数将排序后的数组赋值给变量 "_this.router_table",以供后续程序使用。

分析一下:var common_ops = { init: function () { this.eventBind(); this.setMenuIconHighLight(); }, eventBind: function () { $('.navbar-minimalize').click(function () { $("body").toggleClass("mini-navbar"); SmoothlyMenu(); }); $(window).bind("load resize scroll", function () { if (!$("body").hasClass('body-small')) { fix_height(); } }); }, setMenuIconHighLight: function () { if ($("#side-menu li").size() < 1) { return; } var pathname = window.location.pathname; var nav_name = "default"; if (pathname.indexOf("/account") > -1) { nav_name = "account"; } if (pathname.indexOf("/food") > -1) { nav_name = "food"; } if (pathname.indexOf("/member") > -1) { nav_name = "member"; } if (pathname.indexOf("/finance") > -1) { nav_name = "finance"; } if (pathname.indexOf("/qrcode") > -1) { nav_name = "market"; } if (pathname.indexOf("/stat") > -1) { nav_name = "stat"; } if (nav_name == null) { return; } $("#side-menu li." + nav_name).addClass("active"); }, alert: function (msg, cb) { layer.alert(msg, { yes: function (index) { if (typeof cb == "function") { cb(); } layer.close(index); } }); }, confirm: function (msg, callback) { callback = (callback != undefined) ? callback : {'ok': null, 'cancel': null}; layer.confirm(msg, { btn: ['确定', '取消'] //按钮 }, function (index) { //确定事件 if (typeof callback.ok == "function") { callback.ok(); } layer.close(index); }, function (index) { //取消事件 if (typeof callback.cancel == "function") { callback.cancel(); } layer.close(index); }); }, tip: function (msg, target) { layer.tips(msg, target, { tips: [3, '#e5004f'] }); $('html, body').animate({ scrollTop: target.offset().top - 10 }, 100); }, // 扩展:在前端页面实现url的动态管理 buildUrl: function (path, params) { var url = "" + path; var _paramUrl = ""; if (params) { _paramUrl = Object.keys(params).map(function (k) { return [encodeURIComponent(k), encodeURIComponent(params[k])].join("="); }).join("&"); _paramUrl = "?" + _paramUrl; } return url + _paramUrl; }, buildPicUrl: function (img_key) { var domain = $(".hidden_layout_wrap input[name=domain]").val(); var prefix_url = $(".hidden_layout_wrap input[name=prefix_url]").val(); return domain + prefix_url + img_key; }, }; $(document).ready(function () { common_ops.init(); });

这是一个 JavaScript 对象 common_ops,其中有一些方法,包括 init、eventBind、setMenuIconHighLight、alert、confirm、tip、buildUrl 和 buildPicUrl。其中 init 方法在文档加载完毕后执行,调用了 eventBind 和 setMenuIconHighLight 方法;eventBind 方法绑定了一些事件,包括点击事件和窗口事件;setMenuIconHighLight 方法根据当前页面的路径设置菜单图标的高亮效果;alert 和 confirm 方法分别弹出确认和提示框;tip 方法在指定元素上显示提示信息;buildUrl 方法根据给定的路径和参数构建 URL;buildPicUrl 方法根据给定的图片键值构建图片 URL。
阅读全文

相关推荐

Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) 上述代码中出现错误:RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.),请问如何解决,给出修改后的代码

class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input),上述代码中:出现错误:torchvision.ops.deform_conv2d(input=input, offset=offset1,RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)

class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw - 1) / 2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if n == 1: num_filters = ndf * nf_mult self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): offset1 = self.conv_offset1(input) mask1 = self.conv_mask1(input) input = torch.cat([input, offset1, mask1], dim=1) return self.model(input),运行上述代码出现错误:RuntimeError: Given groups=1, weight of size [18, 512, 3, 3], expected input[1, 3, 512, 512] to have 512 channels, but got 3 channels instead,如何修改,给出代码

大家在看

recommend-type

stm32串行驱动LCD12864显示正弦函数.zip

注: 基于STM32项目,大部分只有源码,部分含有报告+原理图等,仅供学习参考! STM32是ST(意法半导体)公司基于ARM Cortex-M内核开发的一系列32位微控制器(MCU)。这些微控制器专为要求高性能、低成本、低功耗的嵌入式应用而设计,广泛应用于多个领域。 STM32基于ARM Cortex-M内核,包括M0、M0+、M3、M4和M7等多种版本,这些内核专为嵌入式系统设计,提供高效的计算能力和低功耗特性。 高性能:基于ARM Cortex-M内核,提供出色的计算性能。 低功耗:采用先进的节能技术和低功耗设计,能够在不牺牲性能的前提下降低功耗。 丰富的外设资源:包括定时器、ADC(模拟数字转换器)、DAC(数字模拟转换器)、GPIO(通用输入输出)等,方便与外部设备通信。 易于使用:提供丰富的固件库和开发工具,简化开发过程,提高开发效率。 广泛的应用领域:STM32因其卓越的性能和广泛的应用场景,在消费电子、工业控制、汽车电子、医疗设备、物联网(IoT)等多个领域得到了深入应用。
recommend-type

数字电路课程设计之乘法器.doc

使用Verilog语言实现4bit*4bit乘法器设计,并使用Quartes编写程序,使用modelsin进行仿真验证设计
recommend-type

气动学远程火箭导弹弹道(速度与时间 高度与时间)【含Matlab源码 4709期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、物理应用 仿真:导航、地震、电磁、电路、电能、机械、工业控制、水位控制、直流电机、平面电磁波、管道瞬变流、刚度计算 光学:光栅、杨氏双缝、单缝、多缝、圆孔、矩孔衍射、夫琅禾费、干涉、拉盖尔高斯、光束、光波、涡旋 定位问题:chan、taylor、RSSI、music、卡尔曼滤波UWB 气动学:弹道、气体扩散、龙格库弹道 运动学:倒立摆、泊车 天体学:卫星轨道、姿态 船舶:控制、运动 电磁学:电场分布、电偶极子、永磁同步、变压器
recommend-type

基于FPGA的VHDL语言 乘法计算

1、采用专有算法实现整数乘法运算 2、节省FPGA自身的硬件乘法器。 3、适用于没有硬件乘法器的FPGA 4、十几个时钟周期就可出结果
recommend-type

OFDM接收机的设计——ADC样值同步-OFDM通信系统基带设计细化方案

OFDM接收机的设计——ADC(样值同步) 修正采样频率偏移(SFC)。 因为FPGA的开发板上集成了压控振荡器(Voltage Controlled Oscillator,VCO),所以我们使用VOC来实现样值同步。具体算法为DDS算法。

最新推荐

recommend-type

2025职业教育知识竞赛题库(含答案).pptx

2025职业教育知识竞赛题库(含答案).pptx
recommend-type

基于.NET Core MVC与SQL Server的在线考试管理系统:多角色操作、国际化支持、全套源码与文档附赠,.net core mvc在线考试系统 asp.net在线考试管理系统 主要技术:

基于.NET Core MVC与SQL Server的在线考试管理系统:多角色操作、国际化支持、全套源码与文档附赠,.net core mvc在线考试系统 asp.net在线考试管理系统 主要技术: 基于.net core mvc架构和sql server数据库,数据库访问采用EF core code first,前端采用vue.js和bootstrap。 功能模块: 系统包括前台和后台两个部分,分三种角色登录。 管理员登录后台,拥有科目管理,题库管理,考试管理,成绩管理,用户管理等功能。 教师登录后台,可进行题库管理,考试管理和成绩管理。 用户登录前台,可查看考试列表,参加考试,查看已考试的结果,修改密码等。 系统实现了国际化,支持中英两种语言。 源码打包: 包含全套源码,数据库文件,需求分析和代码说明文档。 运行环境: 运行需vs2019或者以上版本,sql server2012或者以上版本。 ,核心关键词: .net core mvc; asp.net在线考试管理系统; SQL Server数据库; EF core code first; vue.js; boot
recommend-type

nvim-monokai主题安装与应用教程

在IT领域,特别是文本编辑器和开发环境的定制化方面,主题定制是一块不可或缺的领域。本文将详细探讨与标题中提及的“nvim-monokai”相关的知识点,包括对Neovim编辑器的理解、Monokai主题的介绍、Lua语言在Neovim中的应用,以及如何在Neovim中使用nvim-monokai主题和树保姆插件(Tree-Sitter)。最后,我们也会针对给出的标签和文件名进行分析。 标题中提到的“nvim-monokai”实际上是一个专为Neovim编辑器设计的主题包,它使用Lua语言编写,并且集成了树保姆(Tree-Sitter)语法高亮功能。该主题基于广受欢迎的Vim Monokai主题,但针对Neovim进行了特别优化。 首先,让我们了解一下Neovim。Neovim是Vim编辑器的一个分支版本,它旨在通过改进插件系统、提供更好的集成和更好的性能来扩展Vim的功能。Neovim支持现代插件架构,有着良好的社区支持,并且拥有大量的插件可供选择,以满足用户的不同需求。 关于Monokai主题,它是Vim社区中非常流行的配色方案,源自Sublime Text编辑器的Monokai配色。Monokai主题以其高对比度的色彩、清晰的可读性和为代码提供更好的视觉区分性而闻名。其色彩方案通常包括深色背景与亮色前景,以及柔和的高亮颜色,用以突出代码结构和元素。 接下来,我们来看看如何在Neovim中安装和使用nvim-monokai主题。根据描述,可以使用Vim的插件管理器Plug来安装该主题。安装之后,用户需要启用语法高亮功能,并且激活主题。具体命令如下: ```vim Plug 'tanvirtin/vim-monokai' " 插件安装 syntax on " 启用语法高亮 colorscheme monokai " 使用monokai主题 set termguicolors " 使用终端的24位颜色 ``` 在这里,`Plug 'tanvirtin/vim-monokai'` 是一个Plug插件管理器的命令,用于安装nvim-monokai主题。之后,通过执行`syntax on` 来启用语法高亮。而`colorscheme monokai`则是在启用语法高亮后,设置当前使用的配色方案为monokai。最后的`set termguicolors`命令是用来确保Neovim能够使用24位的颜色,这通常需要终端支持。 现在让我们谈谈“Lua”这一标签。Lua是一种轻量级的脚本语言,它广泛应用于嵌入式领域,比如游戏开发、工业应用和很多高性能的网络应用中。在Neovim中,Lua同样担当着重要的角色,因为Neovim的配置和插件现在支持使用Lua语言进行编写。这使得Neovim的配置更加模块化、易于理解和维护。 树保姆(Tree-Sitter)是一个为编程语言开发的增量解析库,它提供了一种语言无关的方式来处理源代码语法树的生成和查询。在编辑器中,Tree-Sitter可以用于提供语法高亮、代码折叠、代码导航等强大的功能。nvim-monokai主题的描述中提到包含Tree-Sitter语法高亮功能,这表明用户在使用该主题时,可以享受到更智能、更精确的代码语法高亮效果。 最后,我们来看一下压缩包文件名称“nvim-monokai-master”。这个名称暗示了该压缩包文件是与“nvim-monokai”主题相关的源代码包的主分支版本。通常在GitHub等代码托管平台上,软件的源代码会被放置在“master”分支上,意味着这是一个稳定且可直接使用的版本。用户可以下载此压缩包,解压后,根据说明文档来安装和使用nvim-monokai主题。 综上所述,通过本文的详细介绍,我们了解了如何在Neovim中安装和使用nvim-monokai主题,以及Lua语言在Neovim配置中的应用。我们还学习了Monokai主题的特点,以及Tree-Sitter在提高代码编辑器用户体验方面所扮演的角色。此外,我们也分析了与主题相关的文件名含义,这有助于用户在下载和安装时有更明确的认识。
recommend-type

选课系统设计精髓:7大模块打造高效用户体验

# 摘要 本文全面介绍了选课系统的设计、开发和优化过程。首先,通过需求分析和用户画像构建,确立了系统的功能需求和目标用户群体。接着,对系统架构和技术选型进行了详细设计,确保系统具有高效的数据处理能力和良好的用户交互体验。在功能模块实现阶段,重点打造了课程搜索推荐、选课流程和用户反馈机制。系统测试与质量保证阶段,确立了严格的测试策略和缺陷管理流程。最后,通过案例研究分析了系统的实际应用效果,并展望了未来技术
recommend-type

(2)用户刘星具有对部门表的select、update、insert权限,并允许转授给其他人;(用户刘星权限结果) 代码怎么写

在SQL中,我们通常不会直接在代码里写用户的权限信息,因为这通常是数据库管理系统(如MySQL、Oracle等)的安全配置的一部分。但是,如果你使用的是某种支持角色授权的数据库系统(例如在MySQL的`GRANT`命令),你可以创建一个存储过程或者脚本来模拟这样的权限分配。 以下是一个基本的例子,展示了如何为用户刘星设置权限: ```sql -- 创建一个角色(假设叫role_department_access) CREATE ROLE role_department_access; -- 分配select、update、insert权限到该角色 GRANT SELECT ON depa
recommend-type

Groot应用:打造植树造林的社区互动平台

### 标题知识点解析 #### Groot-App: Groot应用程序开发存储库 - **应用程序开发**:Groot应用程序正在开发中,它是一个软件项目,专注于解决环境恶化问题,具体而言是通过促进植树造林来改善环境。 - **存储库**:存储库(Repository)在这里指的是一个代码仓库,用来存放和管理该应用程序开发过程中的所有代码、文档和其他相关资源。它通常被保存在版本控制系统中,例如Git。 ### 描述知识点解析 - **项目目标**:该应用程序的目的是帮助人们对抗环境恶化的后果,具体通过建立一个易于参与植树造林活动的平台。这包括传播有关植树造林的信息和管理公共环境。 - **功能**: - **公共环境的传播和管理**:平台提供信息分享功能,让用户能够了解植树造林的重要性,并管理植树活动。 - **互动社区**:鼓励用户之间的合作与交流。 - **种植地点发现**:用户可以找到适合的植树地点和适应当地土壤类型的植物种类。 - **项目状态**:当前项目已完成主题选择和用户角色/故事的创建。需求调查正在进行中,尚未完成。同时,项目的功能要求、技术栈、贡献指南仍在编写中。 - **贡献**:项目鼓励外部开发者或参与者贡献代码或提出改进建议。贡献者需要阅读CONTRIBUTING.md文件以了解项目的行为准则以及如何提交贡献的详细流程。 - **作者信息**:列出了开发团队成员的名字,显示出这是一个多成员协作的项目。 - **执照**:该项目采用MIT许可证。MIT许可证是一种开源许可协议,允许用户自由地使用、修改和分发软件,同时也要求保留原作者的版权声明和许可声明。 ### 标签知识点解析 由于提供的文件中没有给出具体的【标签】,因此无法直接解析相关的知识点。 ### 压缩包子文件的文件名称列表知识点解析 - **Groot-App-main**:这通常指的是项目主要分支或版本的文件夹名称。在软件开发中,"main" 分支通常是项目的主干,存放着最新、最稳定的代码。对于该应用程序来说,Groot-App-main文件夹可能包含了所有必要的源代码文件、资源文件以及配置文件,这些是构建和运行Groot应用程序所需的关键元素。 ### 总结 Groot应用程序是一个社会性的环境改善项目,其目的是通过技术手段鼓励和管理植树造林活动。项目成员来自多方面背景,包括玛丽亚·爱德华、凯文·拉莫斯、泰国人克里斯蒂娜、乔万尼·朱尼奥、拉斐拉·布里托、马切洛·戴维和蒂亚戈·科斯塔。他们正在使用MIT许可证来指导项目的开源合作,表明这是一个开放的、可以自由使用的项目。开发者和潜在贡献者可以通过阅读CONTRIBUTING.md文件了解如何参与该项目,并且项目的核心代码和其他相关文件被存放在名为Groot-App-main的文件夹中。整个项目体现了环境保护与IT技术相结合的理念,旨在通过技术手段解决现实世界的环境问题。
recommend-type

构建基石:网上选课系统需求分析与UML建模详解

# 摘要 随着教育信息化的快速发展,网上选课系统作为重要的在线教学平台,其需求分析与系统设计的科学性和实用性日益受到关注。本文首先概述了网上选课系统的基本情况,并对需求分析的基础进行了详细探讨,包括需求工程的概念、分类以及管理和确认流程。接着,文章深入分析了用户角色、场景和关键用例的详细描述,并在此基础上编写了需求规格说明书。文章进一步介绍了统一建模
recommend-type

mysql Ver 14.14 Distrib 5.6.51, for Linux (x86_64) using EditLine wrapper 修改root密码

在MySQL 5.6.51版本中,修改root用户密码的方法有多种。以下是几种常见的方法: ### 方法一:使用mysqladmin命令 1. 打开终端。 2. 输入以下命令并按回车键: ```bash mysqladmin -u root -p旧密码 password 新密码 ``` 例如,如果旧密码是`oldpassword`,新密码是`newpassword`,则命令如下: ```bash mysqladmin -u root -poldpassword password newpassword ``` ### 方法二:通过M
recommend-type

Arctracker:Linux下的开源Tracker和Desktop Tracker模组播放器

Arctracker是一个开源软件,它专门设计用于在Linux操作系统上播放Acorn Archimedes平台上的Tracker和Desktop Tracker格式的音乐模块文件(通常被称为modfile)。为了深入理解这个工具,我们需要详细地探讨一些相关的知识点,包括Tracker音乐、Acorn Archimedes计算机、modfile文件格式,以及Linux上的音频播放技术。 ### Tracker音乐和modfile格式 Tracker音乐是一种独特的数字音乐制作方式,它通过在特定的Tracker软件中编辑音乐样本(声音文件)来创作音乐。这种音乐制作方式最初流行于80年代的家用电脑上,尤其是在Amiga计算机平台中。Tracker音乐的重要特征之一是它将音乐分解成不同音轨(tracks),每个音轨对应一个乐器声音或效果。 Tracker音乐文件(modfile)通常包含多条音轨信息,每个音轨有其独特的音色、音高、音效和时间序列等数据。这种格式允许音乐创作者精确控制音乐的每一部分。modfile格式有多种变体,如MOD, S3M, XM等。Arctracker软件专注于播放Acorn Archimedes上的Tracker文件,也就是Acorn Archimedes专用的modfile格式。 ### Acorn Archimedes计算机 Acorn Archimedes是英国Acorn Computers公司在1987年至1994年间生产的家用及办公用计算机系列。Archimedes系列是基于ARM处理器的第一代计算机,拥有图形用户界面和相对较强大的性能。在当时,Archimedes系列计算机具有非常先进的技术,包括在多媒体和音乐制作领域。 虽然该系列计算机在商业上并没有取得巨大的成功,但它在技术上对后来的计算机发展有深远的影响,ARM架构就是其中之一,现在ARM处理器广泛用于移动设备和嵌入式系统中。 ### Linux操作系统和音频播放 Linux是一种开源的类Unix操作系统,它的内核由Linus Torvalds在1991年首次发布。Linux操作系统拥有广泛的应用,特别是在服务器市场,但随着时间的推移,其桌面版也获得了越来越多的用户。Linux支持多种音频播放技术,包括MP3、FLAC、Ogg Vorbis等现代数字音频格式,还支持旧式的Tracker音乐格式。 ### 开源软件 开源软件(Open Source Software)是一种源代码可被公众访问和修改的软件,其许可证遵循某种开源软件定义标准,比如开源初始化(OSI)定义的标准。开源软件的一个重要特点是它允许用户自由地使用、研究、修改和分发软件。 开源软件社区非常活跃,许多开源项目都是由全球志愿者协作完成的。开源软件有非常广泛的应用,从操作系统(如Linux)到办公软件、网络服务器、数据库管理系统等,无所不包。开源项目通常拥有良好的透明度和社区支持,这也是其得以快速发展的原因之一。 ### Arctracker的使用和开发 Arctracker软件主要面向那些希望在Linux环境下重新体验或开发Acorn Archimedes Tracker音乐的用户。开发者通过研究Tracker文件格式并利用Linux平台上的音频处理技术,构建了这个应用程序。Arctracker可以播放Tracker音乐文件,让用户在现代平台上欣赏到老式的电子音乐作品。 尽管Arctracker功能可能非常专业和有限,但它代表了开源社区对于历史技术和文化遗产保护的承诺。同时,它也展示了开源软件在跨平台兼容性方面的潜力,它使得旧式技术文件格式能在新的硬件和软件环境中得以运行。 ### 结语 Arctracker开源项目的存在,不仅仅为音乐爱好者和历史技术爱好者提供了一个工具,也证明了开源社区能够复活和保护那些可能已经过时但仍然具有文化价值的数字内容。通过这种社区驱动的开发,Arctracker不仅服务于音乐创作者和听众,还丰富了Linux平台上的多媒体应用生态。
recommend-type

Oracle EBS权限体系优化:掌握职责与用户角色设计的最佳实践

# 摘要 Oracle EBS权限体系是企业资源规划系统中确保信息安全和职责明确的关键组件。本文首先概述了Oracle EBS权限体系的框架和理论基础,随后深入探讨了职责与用户角色设计的最佳实践,包括职责分离、角色定义与分类,以及实际操作中的优化策略。文章详细分析了权限管理工具的使用和高级管理技巧,并对云计算和大数据环境下权限体系面临的挑战与机遇进行了展望。通过对实践案例的分析和讨论,本文旨在为读者