spark读取hive源码是怎么样实现的
时间: 2024-03-25 15:37:00 浏览: 212
Apache Spark 通过 HiveContext 来读取 Hive 中的数据,而 HiveContext 是 Spark SQL 中的一个类,它提供了对 Hive 的支持。下面是 Spark 读取 Hive 源码的大致实现过程:
1. 在 Spark 中创建 HiveContext 对象
```
val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
```
2. 使用 HiveContext 对象来查询 Hive 中的数据
```
val data = hiveContext.sql("SELECT * FROM my_table")
```
3. HiveContext 会自动通过 Hive 的元数据来获取表结构信息,然后将其转换为 Spark SQL 中的 SchemaRDD,最终可以通过 Spark SQL 的 API 进行数据分析和处理。
4. 在 Spark 中读取 Hive 表的数据时,HiveContext 会自动将 Hive 表的数据转换为 Spark 中的 RDD,然后进行分布式计算。
总的来说,Spark 通过 HiveContext 实现了对 Hive 的无缝支持,使得用户可以在 Spark 中方便地读取和处理 Hive 中的数据。
相关问题
spark streaming 读取hive
spark streaming可以通过HiveContext来读取Hive表的数据。在使用Spark Streaming读取Hive表之前,你需要在代码中创建一个HiveContext对象,并使用该对象来执行SQL查询操作。你可以使用HiveContext的`sql`方法来执行对Hive表的查询操作。在查询语句中,你可以使用标准的HiveQL语法来编写你的查询条件和过滤条件。在执行查询之后,你可以通过调用`DataFrame`的`show`或`collect`方法来查看查询结果或将结果收集到一个数组中。 <span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Scala代码积累之spark streaming kafka 数据存入到hive源码实例](https://download.csdn.net/download/qq_26803795/10264870)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [Sparkstreaming读取Kafka消息经过spark处理写入hive表](https://blog.csdn.net/wutian713/article/details/99539853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
spark-sql执行源码解读
Spark SQL 是 Apache Spark 生态系统中的一个组件,它提供了用于处理结构化数据的 API。Spark SQL 的执行源码解读主要包括以下几个方面:
1. 解析器(Parser):Spark SQL 使用开源项目 ANTLR 生成的解析器来将 SQL 语句解析为抽象语法树(AST)。该解析器支持 ANSI SQL 标准,可以将 SQL 语句转换为内部的逻辑计划。
2. 优化器(Optimizer):Spark SQL 使用 Catalyst 优化器来对 AST 进行一系列的优化操作。其中包括常量折叠、谓词下推、投影下推等优化规则。通过这些优化规则,Spark SQL 可以将逻辑计划转换为更高效的物理计划。
3. 物理计划生成(Physical Plan Generation):一旦逻辑计划优化完成,Spark SQL 就会根据数据的存储格式和分布式计算模型生成物理计划。这个过程包括将逻辑计划转换为数据流图、选择最优的执行策略(如 Shuffle 与 Broadcast Join)等。
4. 执行引擎(Execution Engine):Spark SQL 的执行引擎负责将物理计划转换为可执行的任务,并在集群上执行这些任务。Spark SQL 支持两种执行模式:本地模式和集群模式。在本地模式下,Spark SQL 会在单个节点上执行任务;而在集群模式下,Spark SQL 会将任务分布到多个节点上进行并行计算。
5. 数据存取(Data Access):Spark SQL 支持多种数据源的读取和写入操作。它可以直接读取 Hadoop 分布式文件系统(HDFS)上的数据,还可以通过适配器支持其他数据存储系统,如 Apache Hive、Apache HBase、MySQL 等。
总的来说,Spark SQL 的执行源码解读涵盖了解析器、优化器、物理计划生成、执行引擎以及数据存取等方面的内容。通过深入了解这些内容,可以更好地理解 Spark SQL 的内部工作原理,并对其进行二次开发和优化。
阅读全文