YOLOv7的Darknet53是哪几行代码
时间: 2024-05-07 17:21:05 浏览: 210
YOLOv7中的Darknet53是一个神经网络模型,包含多个层次的卷积和池化操作。以下是Darknet53的代码实现:
```python
def conv_bn_leaky(x, num_filters, filter_size, stride=1, padding='same'):
x = tf.keras.layers.Conv2D(num_filters, filter_size, strides=stride, padding=padding, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
return x
def residual_block(x, num_filters):
shortcut = x
x = conv_bn_leaky(x, num_filters, 1)
x = conv_bn_leaky(x, num_filters*2, 3)
x = tf.keras.layers.Add()([shortcut, x])
return x
def darknet53(x):
x = conv_bn_leaky(x, 32, 3)
x = conv_bn_leaky(x, 64, 3, stride=2)
x = residual_block(x, 32)
x = conv_bn_leaky(x, 128, 3, stride=2)
for i in range(2):
x = residual_block(x, 64)
x = conv_bn_leaky(x, 256, 3, stride=2)
for i in range(8):
x = residual_block(x, 128)
route_1 = x
x = conv_bn_leaky(x, 512, 3, stride=2)
for i in range(8):
x = residual_block(x, 256)
route_2 = x
x = conv_bn_leaky(x, 1024, 3, stride=2)
for i in range(4):
x = residual_block(x, 512)
return route_1, route_2, x
```
其中,`conv_bn_leaky` 函数实现了卷积层、批量归一化和 LeakyReLU(斜率为 0.1 的修正线性单元)激活函数,`residual_block` 函数实现了残差块,`darknet53` 函数则是将多个卷积层和残差块串联在一起,实现了整个Darknet53网络的前向传播。
阅读全文