seq2seq模型代码
时间: 2023-09-28 13:04:11 浏览: 92
以下是一个简单的 seq2seq 模型代码示例,使用 PyTorch 实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output, hidden = self.gru(embedded, hidden)
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size)
class Decoder(nn.Module):
def __init__(self, hidden_size, output_size):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output = nn.functional.relu(output)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size)
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, input, target, teacher_forcing_ratio=0.5):
target_length = target.size(0)
batch_size = 1
target_vocab_size = self.decoder.out.out_features
encoder_hidden = self.encoder.init_hidden()
encoder_outputs = torch.zeros(MAX_LENGTH, self.encoder.hidden_size, device=device)
for i in range(input.size(0)):
encoder_output, encoder_hidden = self.encoder(input[i], encoder_hidden)
encoder_outputs[i] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
for i in range(target_length):
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden)
loss += criterion(decoder_output, target[i])
decoder_input = target[i]
else:
for i in range(target_length):
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach()
loss += criterion(decoder_output, target[i])
if decoder_input.item() == EOS_token:
break
return loss
```
该模型包括 Encoder 和 Decoder 两个部分,其中 Encoder 将输入序列编码成一个 context 向量,Decoder 则根据 context 向量生成输出序列。在训练过程中,可以使用 teacher forcing 技术,即在 Decoder 的每一步中,都将真实的输出作为下一步的输入,以提高模型的训练效果。
阅读全文