扩展的欧几里得算法求逆元的思想
时间: 2023-09-30 21:09:29 浏览: 121
扩展欧几里得算法求逆元
5星 · 资源好评率100%
扩展的欧几里得算法是求解一元线性同余方程 ax ≡ b(mod n) 的经典算法,其中a、b、n是给定的整数,x是未知的整数。如果a和n互质,则方程有唯一解。否则,方程有无穷多解。此时,我们可以用扩展的欧几里得算法求解方程的通解。
扩展的欧几里得算法的基本思想是利用欧几里得算法求出a和n的最大公约数gcd(a, n),并且利用辗转相除的过程中得到gcd(a, n)的一组贝祖等式:gcd(a, n) = ax + ny,其中x和y是整数。然后,我们可以通过变换贝祖等式得到方程的通解。
接下来我们考虑如何用扩展的欧几里得算法求解求逆元的问题。设a和n是两个互质的整数,那么根据费马小定理,有a^{φ(n)} ≡ 1(mod n),其中φ(n)是n的欧拉函数。因此,a^{φ(n)-1} 是a在模n下的逆元。要求a在模n下的逆元,我们需要先求出φ(n),然后求出a^{φ(n)-1}。这个过程可以利用扩展的欧几里得算法来实现。
具体地,我们可以将a和n带入扩展的欧几里得算法,求出gcd(a,n)和一组贝祖等式gcd(a, n) = ax + ny,如果gcd(a,n)=1,那么x就是a在模n下的逆元。如果gcd(a,n)≠1,那么a在模n下不存在逆元。
综上所述,扩展的欧几里得算法求逆元的思想是,利用扩展的欧几里得算法求出a和n的最大公约数和一组贝祖等式,然后根据贝祖等式得到方程的通解,从而求出a在模n下的逆元。
阅读全文