pytorch绘制acc图像代码
时间: 2023-05-04 14:05:15 浏览: 188
pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率
5星 · 资源好评率100%
pytorch是深度学习领域的一种神经网络编程框架,支持GPU加速,其灵活性和可扩展性广受欢迎。在深度学习任务中,我们经常需要绘制训练过程中的准确率(acc)变化曲线,以便更好地评估模型的性能和优化方向。下面介绍一种使用pytorch绘制acc图像的代码。
首先需要导入相关的pytorch和matplotlib库:
```python
import torch
import matplotlib.pyplot as plt
```
然后定义一个函数用于训练模型,并返回每个epoch的acc值:
```python
def train(model, optimizer, criterion, train_loader, device):
every_epoch_acc = []
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
acc = correct / total
every_epoch_acc.append(acc)
return every_epoch_acc
```
在主函数中,进行模型训练并获取每个epoch的acc值,然后根据这些acc值绘制图像:
```python
def main():
...
every_epoch_acc = []
for epoch in range(num_epochs):
train_acc = train(model, optimizer, criterion, train_loader, device)
every_epoch_acc += train_acc
plt.plot(every_epoch_acc)
plt.title('Training Accuracy vs. Epoch')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.savefig('acc.png')
plt.show()
```
此处省略了主函数中的其他部分,完整代码如下:
```python
import torch
import matplotlib.pyplot as plt
def train(model, optimizer, criterion, train_loader, device):
every_epoch_acc = []
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
acc = correct / total
every_epoch_acc.append(acc)
return every_epoch_acc
def main():
# 导入数据集和定义模型、优化器等
...
every_epoch_acc = []
for epoch in range(num_epochs):
train_acc = train(model, optimizer, criterion, train_loader, device)
every_epoch_acc += train_acc
plt.plot(every_epoch_acc)
plt.title('Training Accuracy vs. Epoch')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.savefig('acc.png')
plt.show()
if __name__ == '__main__':
main()
```
以上就是使用pytorch绘制acc图像的代码。
阅读全文