torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
时间: 2024-06-07 21:07:27 浏览: 100
这段代码的作用是根据是否开启了 CUDA 加速来选择使用 torch.cuda.FloatTensor 还是 torch.FloatTensor。如果使用了 CUDA,就使用 torch.cuda.FloatTensor;否则使用 torch.FloatTensor。这是因为在使用 CUDA 加速时,需要将数据放到 GPU 上进行计算,因而需要使用 torch.cuda.FloatTensor。而在不使用 CUDA 加速时,数据默认在 CPU 上进行计算,因而使用 torch.FloatTensor 即可。
相关问题
use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu") #使用GPU进行训练 from torch.autograd import Variable from replay_buffer import ReplayMemory, Transition # set up matplotlib is_ipython = 'inline' in matplotlib.get_backend() if is_ipython: from IPython import display #plt.ion() use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu")把这段代码改成CPU训练
您可以像这样将上述代码更改为在CPU上进行训练:
```
import torch
from torch.autograd import Variable
from replay_buffer import ReplayMemory, Transition
device = torch.device("cpu") # 使用CPU进行训练
# 设置matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
# 定义FloatTensor
FloatTensor = torch.FloatTensor
# 创建replay buffer
memory = ReplayMemory(10000)
# 将模型和优化器移动到CPU上
model = DQN().to(device)
optimizer = optim.Adam(model.parameters())
# 定义状态转换函数
def state_to_tensor(state):
return FloatTensor([state])
# 训练模型
for i in range(num_episodes):
state = env.reset()
for t in count():
# 获取动作
action = select_action(state)
# 执行动作并获取下一状态、奖励、是否结束
next_state, reward, done, _ = env.step(action.item())
# 转换状态和动作为张量
state_tensor = state_to_tensor(state)
action_tensor = LongTensor([action])
next_state_tensor = state_to_tensor(next_state)
# 存储状态转换
memory.push(state_tensor, action_tensor, next_state_tensor, reward)
# 更新状态
state = next_state
# 训练模型
optimize_model()
if done:
break
```
这里我们将使用CPU进行训练,所以我们将`device`设为`torch.device("cpu")`;将`FloatTensor`设为`torch.FloatTensor`即可。同时,我们还需要将模型和优化器移动到CPU上,可以使用`to`方法将它们移动到CPU上。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数进行模型训练的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from ldam_loss import LDAMLoss # 导入LDAM损失函数
# 定义模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.fc1 = nn.Linear(256 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn2(self.conv2(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn3(self.conv3(x)))
x = F.max_pool2d(x, 2)
x = x.view(-1, 256 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义数据集和数据加载器
train_dataset = ... # 定义训练集
test_dataset = ... # 定义测试集
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
# 定义LDAM损失函数
cls_num_list = ... # 定义每个类别的样本数量
criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30)
# 定义优化器和学习率调度器
model = MyModel().to('cuda')
optimizer = optim.Adam(model.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# 训练模型
for epoch in range(50):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to('cuda'), target.to('cuda')
data, target_a, target_b, lam = mixup_fn(data, target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target_a, target_b, lam) # 使用LDAM损失函数
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 防止梯度爆炸
optimizer.step()
model.eval()
with torch.no_grad():
total = 0
correct = 0
for data, target in test_loader:
data, target = data.to('cuda'), target.to('cuda')
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
acc = 100 * correct / total
print('Epoch {}: Test Acc = {}%'.format(epoch+1, acc))
scheduler.step()
```
在以上代码中,我们首先定义了一个名为`MyModel`的模型,然后定义了训练集和测试集的数据加载器。接着,我们使用LDAM损失函数来定义模型的损失函数,然后使用Adam优化器来训练模型。在每个epoch结束后,我们使用测试集来评估模型的性能,并使用学习率调度器来调整学习率。
阅读全文