matlab实现GAN
时间: 2023-05-26 19:05:23 浏览: 135
GAN是一种用于训练生成器网络和判别器网络的深度学习算法,可以用来生成新样本。MATLAB提供了深度学习工具箱和图形用户界面(Deep Network Designer),可以帮助您轻松构建、训练和验证GAN模型。
下面是一个简单的GAN模型的MATLAB实现:
首先,导入必要的工具箱:
```
addpath('工具箱路径');
% 导入必要的工具箱
% 如果您尚未安装工具箱,则可以从此处下载安装
% https://cn.mathworks.com/products/deep-learning.html
% https://cn.mathworks.com/products/deep-learning/designer.html
```
接下来,构建生成器和判别器网络:
```
% 构建生成器网络
generator = [
imageInputLayer([100 1 1],'Normalization','none')
fullyConnectedLayer(128*7*7)
reshapeLayer([128 7 7])
transposedConv2dLayer(4,256,'Stride',2,'Cropping','same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(4,128,'Stride',2,'Cropping','same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(4,64,'Stride',2,'Cropping','same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(4,1,'Stride',2,'Cropping','same')
tanhLayer
];
% 构建判别器网络
discriminator = [
imageInputLayer([28 28 1])
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
leakyReluLayer(0.2)
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,128,'Padding','same')
batchNormalizationLayer
leakyReluLayer(0.2)
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,256,'Padding','same')
batchNormalizationLayer
leakyReluLayer(0.2)
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,512,'Padding','same')
batchNormalizationLayer
leakyReluLayer(0.2)
fullyConnectedLayer(1)
sigmoidLayer
];
```
然后,将生成器和判别器网络合并成一个GAN模型:
```
% 将生成器和判别器网络合并为一个GAN模型
gan = ganModel(generator, discriminator);
```
最后,进行训练:
```
% 加载训练数据集
[XTrain, ~] = digitTrain4DArrayData;
% 定义GAN模型参数
opts = trainingOptions('adam', ...
'MiniBatchSize', 128, ...
'MaxEpochs', 100, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练GAN模型
[gan,info] = trainNetwork(XTrain, gan, opts);
```
阅读全文