写一个不使用kdtree或balltree的DBSCAN聚类的python代码
时间: 2024-05-07 16:19:54 浏览: 94
下面是一个简单的实现DBSCAN聚类的Python代码:
```python
class DBSCAN:
def __init__(self, eps, min_samples):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
self.labels_ = np.zeros(len(X))
self.visited_ = np.zeros(len(X))
label = 0
for i in range(len(X)):
if not self.visited_[i]:
self.visited_[i] = 1
neighbors = self.region_query(X[i])
if len(neighbors) < self.min_samples:
self.labels_[i] = -1 # noise
else:
self.expand_cluster(X, i, neighbors, label)
label += 1
return self.labels_
def expand_cluster(self, X, i, neighbors, label):
self.labels_[i] = label
for j in neighbors:
if not self.visited_[j]:
self.visited_[j] = 1
new_neighbors = self.region_query(X[j])
if len(new_neighbors) >= self.min_samples:
neighbors = np.concatenate((neighbors, new_neighbors))
if self.labels_[j] == 0:
self.labels_[j] = label
def region_query(self, X):
return np.where(np.linalg.norm(self.eps - X, axis=1) <= self.eps)[0]
```
该代码中的DBSCAN类具有fit方法,该方法接受数据矩阵作为输入,并返回一个长度为n的标签数组,其中n是输入数据的样本数。标签为-1表示噪声点,而其他标签表示相应的聚类。该代码使用欧几里得距离进行距离计算。
阅读全文