lightgbm3分类算法,输入439*800,439个样本,每个样本有800个特征,输出为439*3,每个样本用3位编码代表样本类别,matlab代码
时间: 2024-02-20 09:56:55 浏览: 138
LightM是一种高效的梯度提升框架,它提供了Python、R、C++等多种语言的接口。如果您想要在Matlab中实现LightGBM算法,可以使用LightGBM官方提供的C++接口,然后在Matlab中调用C++接口。以下是可能的实现步骤:
1. 安装LightGBM C++库
请参考LightGBM官方文档,下载并安装对应的C++库。
2. 编写C++代码
在C++中编写LightGBM分类算法的代码,并将其封装为一个可调用的函数。以下是一个示例代码:
```cpp
#include <iostream>
#include <cstdio>
#include <LightGBM/c_api.h>
int main(int argc, char** argv) {
// Load data
std::string train_file = "train_data.txt";
std::string test_file = "test_data.txt";
std::string model_file = "model.txt";
std::string param_str = "task=train num_class=3";
const char* data_filename = train_file.c_str();
const char* test_filename = test_file.c_str();
const char* model_filename = model_file.c_str();
const char* param_filename = param_str.c_str();
int num_threads = 0;
int early_stopping_round = 10;
double learning_rate = 0.1;
int num_iterations = 1000;
int num_leaves = 31;
// Load training data
int num_train_samples = 439;
int num_features = 800;
double* data = new double[num_train_samples*num_features];
double* label = new double[num_train_samples];
// Load data from file
// ...
// Create dataset
const char* data_format = "array";
LGBM_DatasetHandle train_data;
LGBM_DatasetCreateFromMat(data, data_format, num_train_samples, num_features, 1, label, -1, NULL, &train_data);
// Set parameters
LGBM_ParamsHandle params;
LGBM_CreateParams(¶ms);
LGBM_SetParam(params, "learning_rate", std::to_string(learning_rate).c_str());
LGBM_SetParam(params, "num_iterations", std::to_string(num_iterations).c_str());
LGBM_SetParam(params, "num_leaves", std::to_string(num_leaves).c_str());
// Train model
LGBM_BoosterHandle booster;
LGBM_BoosterCreate(train_data, param_filename, &booster);
for (int i = 0; i < num_iterations; ++i) {
LGBM_BoosterUpdateOneIter(booster);
if (LGBM_BoosterGetCurrentIteration(booster) % 10 == 0) {
int is_finished;
LGBM_BoosterIsFinished(booster, &is_finished);
if (is_finished) {
break;
}
double score;
LGBM_BoosterEvalOneMetric(booster, "multi_logloss", &score);
std::printf("Iteration %d, multi_logloss = %g\n", LGBM_BoosterGetCurrentIteration(booster), score);
}
}
// Save model
LGBM_BoosterSaveModel(booster, -1, -1, model_filename);
// Load test data
int num_test_samples = 100;
double* test_data = new double[num_test_samples*num_features];
double* test_label = new double[num_test_samples];
// Load data from file
// ...
// Create dataset
LGBM_DatasetHandle test_data;
LGBM_DatasetCreateFromMat(test_data, data_format, num_test_samples, num_features, 1, test_label, -1, NULL, &test_data);
// Predict
LGBM_BoosterPredictForMat(booster, test_data, num_test_samples, num_features, 1, LGBM_PREDICT_NORMAL, -1, NULL, NULL);
// Free memory
delete[] data;
delete[] label;
delete[] test_data;
delete[] test_label;
LGBM_DatasetFree(train_data);
LGBM_DatasetFree(test_data);
LGBM_ParamsFree(params);
LGBM_BoosterFree(booster);
return 0;
}
```
3. 编写Matlab代码
在Matlab中编写调用上述C++函数的代码。以下是一个示例代码:
```matlab
% Load data
data = dlmread('train_data.txt');
label = dlmread('train_label.txt');
% Call C++ function
results = call_lightgbm(data, label);
% Save results
dlmwrite('results.txt', results);
```
在上述示例代码中,`call_lightgbm`函数是调用C++函数的Matlab函数,它可以使用Matlab的MEX机制实现。具体实现方式请参考Matlab官方文档。
希望这些信息能够对您有所帮助!
阅读全文