实现将一个无向图邻接矩阵转换成邻接表

时间: 2023-05-31 07:19:00 浏览: 445
### 回答1: 将无向图的邻接矩阵转换成邻接表可以按照以下步骤进行: 1. 创建一个空的邻接表,包含与无向图中顶点数相同的链表。 2. 遍历邻接矩阵,对于每个非零元素,将其对应的两个顶点加入到它们对应的链表中。 3. 对于每个链表,按照顶点编号的大小进行排序,以便后续操作。 4. 输出邻接表,每个链表中的顶点即为该顶点所连接的其他顶点。 例如,对于以下无向图的邻接矩阵: ``` 1 1 1 1 1 1 1 1 1 1 ``` 将其转换成邻接表后,可以得到如下结果: ``` -> 1 -> 2 1 -> -> 2 -> 3 2 -> -> 1 -> 3 3 -> 1 -> 2 ``` 其中,每个链表中的数字表示该顶点所连接的其他顶点的编号。 ### 回答2: 邻接矩阵是一种表示图的方式,其中矩阵的每个元素表示两个顶点之间是否有边相连,即该矩阵为一个n*n的二维数组,其中n为图的结点数。而邻接表则是另一种表示图的方式,将每个结点与所有与之相连的结点及其边表示出来。 邻接表是由一个数组和若干个链表组成的数据结构。数组中每个元素表示一个结点,而该结点所对应的链表则记录了与该结点相连的所有结点及其边。 将邻接矩阵转换成邻接表的过程可以通过以下步骤实现: 1. 创建一个大小为n的数组,其中n为无向图的结点数。 2. 遍历邻接矩阵的每一个元素,对于值为1的元素(表示两个结点之间有边相连),将对应数组中的结点与相连结点添加到对应的链表中。 3. 遍历每个结点的链表,将链表中的所有边按照顺序输出即可。 需要注意的是,在邻接表中,每条边需要保存两个信息:起点和终点结点。 邻接表相对于邻接矩阵的优势在于可以减少存储空间的需求。当图的结点数量很大,但连接不是很繁密时,用邻接表存储图的信息可以显著地减少所需存储空间。而邻接矩阵则需一直维护一个n*n的矩阵,无论是否有相连的边存在。 因此,将无向图邻接矩阵转换成邻接表,可以在存储图的信息的同时,提升程序的运行效率,减少空间的浪费。 ### 回答3: 无向图是指没有方向的图,邻接矩阵是一种图的表示方法,它可以将一个无向图表示为一个二维的矩阵。在邻接矩阵中,每行和每列分别代表每一个节点,若两个节点之间有边相连,则该位置的数值为1,否则为0。 将无向图的邻接矩阵转换为邻接表的过程,是将每一个节点以及与之相邻的节点之间的关系,表示成一张链表的形式。具体的步骤如下: 1. 创建一个大小为n(n为节点数量)的链表数组,数组中的每一个元素代表一个节点; 2. 对于邻接矩阵中第i行(或第i列)的元素,若其值为1,则在第i个节点的链表中添加一个指向第j个节点的指针; 3. 对于对称矩阵中的每一个元素,即邻接矩阵中的上三角或下三角区域,都需相应地在两个节点的链表中添加指向对方节点的指针。 以上三个步骤可以简单地用两个循环完成。代码如下: ``` //邻接矩阵转换为邻接表 vector<vector<int>> matrix_to_list(vector<vector<int>> matrix) { int n = matrix.size(); vector<vector<int>> list(n, vector<int>()); //创建链表数组 for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { //对称矩阵只需操作一半 if (matrix[i][j] == 1) { list[i].push_back(j); //在i的链表中添加j list[j].push_back(i); //在j的链表中添加i } } } return list; } ``` 以上代码中,使用了STL中的vector作为动态数组,依次遍历邻接矩阵的每个元素,在对应的两个节点的链表中添加指向对方节点的指针。最终返回的是一个链表数组,每一个元素都代表一个节点。这个节点的链表就是与之相邻的所有节点。 转换后的邻接表左右对称,占用空间相对邻接矩阵更小,并且可以更方便地进行节点相邻关系的访问和修改。因此,在处理无向图时,一般都会采用邻接表的方式来进行表示和计算。
阅读全文

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

总之,这个程序设计任务要求我们理解并实现无向图的两种主要遍历方法,以及如何利用邻接表或邻接矩阵存储图。通过这些方法,我们可以有效地探索图的结构,找出路径,解决许多实际问题,如搜索、最短路径计算等。
recommend-type

C++实现图的邻接矩阵表示

C++实现图的邻接矩阵表示 在计算机科学和信息技术领域中,图理论是一个非常重要的概念,广泛应用于社会网络、交通网络、计算机网络等领域。图的表示方式有多种,邻接矩阵是一种常用的图表示方法。在C++中实现图的...
recommend-type

基于Matlab极化天线和目标之间的信号传输建模 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战指南】MATLAB自适应遗传算法调整:优化流程全掌握

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法基础与MATLAB环境搭建 遗传算法(Genetic Algorithm, GA)是模拟生物进化过程的搜索启发式算法,它使用类似自然选择和遗传学的原理在潜在解空间中搜索最优解。在MATLAB中实现遗传算法需要先搭建合适的环境,设置工作路径,以及了解如何调用和使用遗传算法相关的函数和工具箱。 ## 1.1 遗传算法简介 遗传算法是一种全局优化算法,它的特点是不依赖于问题的梯度信息,适用于搜索复杂、多峰等难