import+numpy+as+np import+scipy.stats+as+stats data+=+np.array([ ++++[78,+60.6,+16.5], ++++[76,+58.
时间: 2023-11-22 15:46:06 浏览: 91
这段代码是Python中导入numpy和scipy.stats库,并将一个包含三个元素的二维数组赋值给变量data。其中,numpy是Python中用于科学计算的一个库,而scipy.stats则是用于统计分析的库。
在这段代码中,使用了import关键字来导入库,并使用as关键字给库取了别名,这样在后续的代码中就可以使用别名来调用库中的函数和方法。
对于data数组的赋值,使用了numpy中的array函数来创建一个二维数组,并将其赋值给变量data。其中,每个一维数组都包含三个元素。
相关问题
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from seaborn.external.kde import gaussian_kde sns.set() from scipy import stats from typing import * df = pd.read_excel("D:\\pythonProject\\data\\冬天.xls") power = df["功率"] #获取一列,用一维数据 power = np.array(power) print(power) import numpy as np from sklearn.neighbors import KernelDensity # 将 DataFrame 转换为 numpy 数组 data = df.to_numpy() # 从DataFrame类型中提取所需的列并将其转换为numpy数组类型 data = np.array(df['功率']) # 使用gaussian_kde函数进行核密度估计 density = gaussian_kde(data) # 生成横坐标 x = np.linspace(min(data), max(data),60) plt.plot(x, density(x)) import numpy as np from scipy import interpolate # 准备数据 x = data y = density(x) # 进行B样条曲线拟合 tck = interpolate.splrep(x, y, k=3, s=0) # 计算拟合曲线的值 x_new = np.linspace(x.min(), x.max(), 500) y_new = interpolate.splev(x_new, tck, der=0) # 保存系数矩阵 np.savez('tck.npz', tck)
这这段这段代码这段代码是这段代码是在这段代码是在Python这段代码是在Python中这段代码是在Python中使用这段代码是在Python中使用numpy这段代码是在Python中使用numpy、这段代码是在Python中使用numpy、matplotlib这段代码是在Python中使用numpy、matplotlib、这段代码是在Python中使用numpy、matplotlib、p这段代码是在Python中使用numpy、matplotlib、pandas这段代码是在Python中使用numpy、matplotlib、pandas、这段代码是在Python中使用numpy、matplotlib、pandas、se这段代码是在Python中使用numpy、matplotlib、pandas、seab这段代码是在Python中使用numpy、matplotlib、pandas、seaborn这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、sc这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的数据这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的数据。
import numpy as np import matplotlib.pyplot as plt import pandas as pd w = pd.read_csv('BostonHousing2.csv') w_new=w.drop(columns=["chas"],axis=1) wn0 = w_new.columns wn = wn0[5:] f = plt.figure(figsize=(16,8)) k=0 for i in range(len(wn)): for j in range(len(wn)): k=k+1 if i!=j: f.add_subplot(len(wn),len(wn),k) else: f.add_subplot(len(wn),len(wn),k) plt.scatter([0,1],[0,1]) plt.text(.5,.5,wn[i],\ ha='center',va='center',size=10) y=np.array(w[wn[0]])[:,np.newaxis] X=np.array(w[wn[1:]]) from sklearn import linear_model regr=linear_model.LinearRegression(fit_intercept=False) regr.fit(X,y) print(regr.coef_) res=y-regr.predict(X) import scipy.stats as stats import pylab res.shape=res.shape[0] f=plt.figure(figsize=(12,5)) f.add_subplot(121) plt.scatter(regr.predict(X),res) plt.plot(regr.predict(X),np.ones(len(y))) plt.xlabel('Fitted values') plt.ylabel('Residuals') f.add_subplot(122) stats.probplot(res,dist="norm",plot=pylab) plt.show() from sklearn.tree import DecisionTreeRegressor from sklearn import tree import graphviz regr2 =DecisionTreeRegressor(max_depth=4,random_state=100) regr2 = regr2.fit(X,y) dot_data=tree.export_graphviz(regr2,feature_names=wn[1:],out_file=None) graph=graphviz.Source(dot_data) f=plt.figure(figsize=(12,5)) f.add_subplot(111) height=regr2.feature_importances_ bars = wn[1:] y_pos=np.arange(len(bars)) plt.bar(y_pos,height) plt.xticks(y_pos,bars) plt.yticks() plt.show() 解释以上代码
以上代码是用于数据分析和可视化的Python代码。首先,它使用pandas库加载名为'BostonHousing2.csv'的csv文件,并删除了"chas"列。然后,它选择了一些列作为特征和目标变量,并使用线性回归模型进行拟合和预测。接下来,它计算了预测值与实际值之间的残差,并进行了残差分析和正态概率图。然后,它使用决策树回归模型进行拟合,并可视化了决策树模型和特征的重要性。最后,它显示了这些可视化结果。
请注意,这段代码假设你已经安装了相关的库(如numpy、matplotlib、pandas、scikit-learn和graphviz),并且已经有了'BostonHousing2.csv'文件作为数据源。
阅读全文