void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } }偏移公式计算是否正确

时间: 2024-04-24 09:21:46 浏览: 15
根据您提供的代码,偏移公式计算是正确的。以下是对每个偏移量计算的解释: 1. `co * raw_shape * col_shape`:这个偏移量是为了根据通道索引`co`计算在一维数组中的起始位置。由于每个通道有`raw_shape * col_shape`个元素,所以将通道索引乘以这个数量得到起始位置的偏移量。 2. `raw * 32 * col_shape`:这个偏移量是为了根据行索引`raw`计算在一维数组中的偏移量。由于每个行有32个元素,所以将行索引乘以32得到偏移量。 3. `col * 64`:这个偏移量是为了根据列索引`col`计算在一维数组中的偏移量。由于每个列有64个元素,所以将列索引乘以64得到偏移量。 通过这些偏移量的计算,可以将`image_in_raw_pad_burst`指针指向的地址移动到正确的位置,以便从该位置开始读取数据并存储到`img_buf[co][h][w]`中。 请注意,以上解释是基于代码提供的信息,如果存在其他上下文或变量的定义,请确保它们与代码的逻辑一致。
相关问题

void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } }进一步解释image_pad_in_pad_burst_ptr[w];是什么意思

`image_pad_in_pad_burst_ptr[w]`是一个数组指针操作,用于访问`image_pad_in_pad_burst_ptr`指针指向的数组中的元素。 在该代码中,`image_pad_in_pad_burst_ptr`是一个指向类型为`ap_uint<8>`的数组的指针。通过对指针进行下标操作`[w]`,可以访问`image_pad_in_pad_burst_ptr`指针指向的数组的第`w`个元素。 具体来说,`image_pad_in_pad_burst_ptr`指针指向一个一维数组,通过下标操作符`[w]`,可以访问该一维数组中索引为`w`的元素,并将其赋值给`img_buf[co][h][w]`,即将该元素的值存储在`img_buf`三维数组中对应的位置。 需要注意的是,这里使用了循环来遍历`h`和`w`,以便将指针在一维数组中移动到下一个元素的位置。这样就可以逐个将一维数组中的元素复制到`img_buf`三维数组中的对应位置。

void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } }进一步解释image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64;

`image_pad_in_pad_burst_ptr`是一个指针变量,通过对它进行赋值操作,将其指向`image_in_raw_pad_burst`指针指向的位置加上一定的偏移量。 在该代码中,`image_in_raw_pad_burst`是一个指向类型为`ap_uint<8>`的内存块(或数组)的指针。通过对`image_in_raw_pad_burst`进行指针运算,可以计算出指向特定位置的地址。 具体来说,通过以下计算方式确定`image_pad_in_pad_burst_ptr`指针的位置: 1. `co * raw_shape * col_shape`:这部分偏移量用于根据通道索引`co`、行数`raw`和列数`col`来计算在一维数组中的起始位置。`raw_shape`和`col_shape`是输入图像的原始形状(即行数和列数)。 2. `raw * 32 * col_shape`:这部分偏移量用于根据行数`raw`来计算在一维数组中的偏移量。由于每个行有32个元素,所以乘以32。 3. `col * 64`:这部分偏移量用于根据列数`col`来计算在一维数组中的偏移量。由于每个列有64个元素,所以乘以64。 通过以上计算得到的偏移量,将其加到`image_in_raw_pad_burst`指针指向的地址上,就得到了`image_pad_in_pad_burst_ptr`指向的位置。 这样,在内层的两个循环中,通过对`image_pad_in_pad_burst_ptr`进行下标操作`[w]`,可以访问`image_pad_in_pad_burst_ptr`指针指向的数组中的元素,并将其赋值给`img_buf[co][h][w]`,即将该元素的值存储在`img_buf`三维数组中对应的位置。

相关推荐

图像块大小是多少进一步解释 void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } } void Special_test1( ap_uint<8> static image_in_raw_pad[16 * 512 * 1024], ap_uint<8> static ddr_dw0_out_PL_burst[16 * 130 * 258], ap_uint<8> static ddr_dw1_out_PL_burst[16 * 130 * 258], ap_uint<8> static out_feature[16 * 128 * 256]) { ap_uint<8> static FeatureMapBuf0[16][34][66]; ap_uint<8> static FeatureMapBuf1[16][34][66]; for (int raw = 0; raw < 16; raw++) { for (int col = 0; col < 16; col++) { load_image_1x1(FeatureMapBuf0, image_in_raw_pad, raw, col, 512, 1024); conv1x1(FeatureMapBuf0, FeatureMapBuf1, weight_conv1,bias_conv1_int, q_dq_1); store_4x4_AvgPooling_debug(FeatureMapBuf1, ddr_dw0_out_PL_burst, raw, col, 130, 258); } } std::cout << "over!!!!"; for (int raw = 0; raw < 8; raw++) { for (int col = 0; col < 8; col++) { load_image_chunk_norm(FeatureMapBuf0, ddr_dw0_out_PL_burst, raw, col, 130, 258); DW_CONV_3x3(FeatureMapBuf0, FeatureMapBuf1, weight_conv3,bias_conv3_int, q_dq_3); store_3x3conv(FeatureMapBuf1, ddr_dw1_out_PL_burst, raw, col, 130, 258); } }

解释图像块是什么 进一步解释 void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } } void Special_test1( ap_uint<8> static image_in_raw_pad[16 * 512 * 1024], ap_uint<8> static ddr_dw0_out_PL_burst[16 * 130 * 258], ap_uint<8> static ddr_dw1_out_PL_burst[16 * 130 * 258], ap_uint<8> static out_feature[16 * 128 * 256]) { ap_uint<8> static FeatureMapBuf0[16][34][66]; ap_uint<8> static FeatureMapBuf1[16][34][66]; for (int raw = 0; raw < 16; raw++) { for (int col = 0; col < 16; col++) { load_image_1x1(FeatureMapBuf0, image_in_raw_pad, raw, col, 512, 1024); conv1x1(FeatureMapBuf0, FeatureMapBuf1, weight_conv1,bias_conv1_int, q_dq_1); store_4x4_AvgPooling_debug(FeatureMapBuf1, ddr_dw0_out_PL_burst, raw, col, 130, 258); } } std::cout << "over!!!!"; for (int raw = 0; raw < 8; raw++) { for (int col = 0; col < 8; col++) { load_image_chunk_norm(FeatureMapBuf0, ddr_dw0_out_PL_burst, raw, col, 130, 258); DW_CONV_3x3(FeatureMapBuf0, FeatureMapBuf1, weight_conv3,bias_conv3_int, q_dq_3); store_3x3conv(FeatureMapBuf1, ddr_dw1_out_PL_burst, raw, col, 130, 258); } }

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。