matlab绘制波特图格线
时间: 2023-11-12 14:03:36 浏览: 90
lab绘制波特图格线的步骤如下:
```matlab
% 1. 定义阻抗和反射系数的范围
Zmin = 0; Zmax = 100; Rmin = 0; Rmax = 1;
% 2. 定义反射系数的值
r = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1];
% 3. 计算对应的阻抗值
Z = (Zmax-Zmin)*((1+r)./(1-r))+Zmin;
% 4. 绘制波特图格线
figure;
plot(Z, zeros(size(Z)), 'k', 'LineWidth', 2); hold on;
plot(Z, ones(size(Z)), 'k', 'LineWidth', 2); hold on;
plot(Z, 0.5*ones(size(Z)), 'k--', 'LineWidth', 1); hold on;
plot([Zmin, Zmax], [0.5, 0.5], 'k--', 'LineWidth', 1); hold on;
plot([Zmin, Zmax], [0, 0], 'k:', 'LineWidth', 1); hold on;
plot([Zmin, Zmax], [1, 1], 'k:', 'LineWidth', 1); hold on;
axis([Zmin, Zmax, -0.1, 1.1]);
xlabel('阻抗'); ylabel('反射系数');title('波特图格线');
```
运行以上代码即可绘制出波特图格线。
相关问题
python绘图格点化
如果你需要将一个二维数据转换为格点,并进行可视化的话,可以使用Python中的matplotlib库和numpy库。
首先,导入必要的库:
```python
import numpy as np
import matplotlib.pyplot as plt
```
然后,生成一些二维数据。例如,我们可以生成一个正弦函数:
```python
x = np.linspace(-10, 10, 100)
y = np.linspace(-10, 10, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
```
现在,我们可以使用`plt.pcolormesh()`函数将这个二维数据转换为格点,并绘制出来:
```python
plt.pcolormesh(X, Y, Z, cmap='coolwarm')
plt.colorbar()
plt.show()
```
其中,`cmap`参数指定了使用的颜色映射。
完整的代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-10, 10, 100)
y = np.linspace(-10, 10, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
plt.pcolormesh(X, Y, Z, cmap='coolwarm')
plt.colorbar()
plt.show()
```
运行后,会得到一个类似于下图的格点图:
![格点图](https://i.imgur.com/1mRiJGc.png)
用python写人工蜂群算法描述机器人栅栏图格路劲规划
人工蜂群算法是一种基于模拟蜜蜂觅食行为的优化算法,可用于求解复杂的路径规划问题。下面是一份用 Python 实现的人工蜂群算法描述机器人栅栏图格路径规划的代码示例:
```python
import numpy as np
# 栅栏图格地图类
class Map:
def __init__(self, width, height, obstacles):
self.width = width
self.height = height
self.obstacles = obstacles
def is_obstacle(self, x, y):
for obstacle in self.obstacles:
if obstacle[0] == x and obstacle[1] == y:
return True
return False
# 机器人类
class Robot:
def __init__(self, map, start, end):
self.map = map
self.start = start
self.end = end
# 计算两点之间的距离
def distance(self, point1, point2):
return np.sqrt(np.power(point1[0] - point2[0], 2) + np.power(point1[1] - point2[1], 2))
# 计算路径长度
def path_length(self, path):
length = 0
for i in range(len(path) - 1):
length += self.distance(path[i], path[i + 1])
return length
# 搜索可行路径
def find_path(self):
# 初始化参数
n = 100 # 蜜蜂数量
limit = 20 # 蜜蜂搜索范围
max_iter = 100 # 最大迭代次数
alpha = 0.5 # 局部搜索因子
beta = 0.5 # 全局搜索因子
path_len = float('inf') # 初始路径长度为正无穷大
path = None # 最优路径
# 初始化蜜蜂
bees = []
for i in range(n):
bee = {'pos': self.start, 'path': [self.start]}
bees.append(bee)
# 迭代搜索
for i in range(max_iter):
# 局部搜索
for bee in bees:
local_best_len = float('inf')
local_best_path = None
for j in range(-limit, limit + 1):
for k in range(-limit, limit + 1):
x = bee['pos'][0] + j
y = bee['pos'][1] + k
if x >= 0 and x < self.map.width and y >= 0 and y < self.map.height and not self.map.is_obstacle(x, y):
new_path = bee['path'] + [(x, y)]
new_len = self.path_length(new_path)
if new_len < local_best_len:
local_best_len = new_len
local_best_path = new_path
bee['path'] = local_best_path
# 全局搜索
for bee in bees:
global_best_len = float('inf')
global_best_path = None
for j in range(n):
if bees[j] != bee:
other_bee = bees[j]
if other_bee['path'][-1] == bee['path'][-1]:
common_path_len = self.path_length(other_bee['path'])
new_path = bee['path'] + other_bee['path'][1:]
new_len = self.path_length(new_path) + alpha * common_path_len
if new_len < global_best_len:
global_best_len = new_len
global_best_path = new_path
bee['path'] = global_best_path
# 更新最优路径
for bee in bees:
if bee['path'][-1] == self.end:
bee_len = self.path_length(bee['path'])
if bee_len < path_len:
path_len = bee_len
path = bee['path']
# 更新蜜蜂位置
for bee in bees:
if bee['path'][-1] != self.end:
i = np.random.randint(len(bee['path']) - 1)
j = np.random.randint(len(bee['path']) - 1)
bee['pos'] = bee['path'][i]
bee['path'] = bee['path'][:i] + bee['path'][j:]
return path
```
该代码中,`Map` 类表示栅栏图格地图,`Robot` 类表示机器人。`Robot` 类中的 `find_path` 方法实现了人工蜂群算法的搜索过程,其中包括局部搜索和全局搜索两个过程。搜索过程中,每只蜜蜂都记录了当前的位置和路径,通过不断更新路径来搜索最优路径。最优路径的更新过程中,采用了局部搜索因子和全局搜索因子来平衡局部搜索和全局搜索的贡献。最终返回的路径即为搜索到的最优路径。
要使用该代码,需要先构造一个 `Map` 对象和一个 `Robot` 对象,然后调用 `Robot` 对象的 `find_path` 方法即可得到最优路径。例如:
```python
# 构造地图
width = 10
height = 10
obstacles = [(2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (6, 3), (6, 4), (6, 5), (5, 5), (4, 5), (3, 5)]
map = Map(width, height, obstacles)
# 构造机器人
start = (0, 0)
end = (9, 9)
robot = Robot(map, start, end)
# 搜索路径
path = robot.find_path()
print(path)
```
该代码将在一个 $10 \times 10$ 的栅栏图格地图中搜索从 $(0, 0)$ 到 $(9, 9)$ 的最优路径,其中包含了一些障碍物。搜索完成后,将打印出搜索到的最优路径。
阅读全文