写一个图神经网络模型,对节点按照不同层的不同区域进行注意力聚合,首先使用GCN聚合区域内的节点特征,在对同一阶的不同区域使用注意力聚合,最后使用注意力聚合不同阶的特征
时间: 2024-05-16 14:14:53 浏览: 67
好的,以下是一个图神经网络模型的示例,实现了对节点按照不同层的不同区域进行注意力聚合的功能:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class MultiLevelAttentionGCN(nn.Module):
def __init__(self, in_channels, out_channels, num_layers, num_regions):
super(MultiLevelAttentionGCN, self).__init__()
self.num_layers = num_layers
self.num_regions = num_regions
# GCN layers
self.gcn_layers = nn.ModuleList()
for i in range(num_layers):
self.gcn_layers.append(GCNConv(in_channels, out_channels))
# Attention layers
self.attention_layers = nn.ModuleList()
for i in range(num_layers):
self.attention_layers.append(nn.ModuleList([
nn.Linear(out_channels, out_channels),
nn.Linear(out_channels, out_channels),
nn.Linear(out_channels, 1)
]))
# Attention weights
self.attention_weights = nn.Parameter(torch.Tensor(num_layers, num_regions, out_channels))
nn.init.xavier_uniform_(self.attention_weights)
def forward(self, x, edge_index):
h_list = []
# GCN layers
for i in range(self.num_layers):
h = self.gcn_layers[i](x, edge_index)
h = F.relu(h)
h_list.append(h)
# Attention layers
for i in range(self.num_layers):
h = h_list[i]
region_attentions = []
for j in range(self.num_regions):
region_mask = (x[:, 0] == j).unsqueeze(1)
region_h = h * region_mask
region_h = F.relu(region_h)
region_att = self.attention_layers[i][2](torch.tanh(
self.attention_layers[i][0](region_h) +
self.attention_layers[i][1](self.attention_weights[i][j])
))
region_attentions.append(region_att)
region_attentions = torch.cat(region_attentions, dim=1)
region_attentions = F.softmax(region_attentions, dim=1)
h = torch.sum(h * region_attentions, dim=1)
h_list[i] = h
# Final attention
final_attentions = []
for i in range(self.num_layers):
final_att = self.attention_weights[i][0] * h_list[i]
for j in range(1, self.num_regions):
final_att += self.attention_weights[i][j] * h_list[i][:, j * out_channels:(j+1) * out_channels]
final_attentions.append(final_att)
final_attentions = torch.cat(final_attentions, dim=1)
final_attentions = F.softmax(final_attentions, dim=1)
h = torch.sum(torch.cat(h_list, dim=1) * final_attentions, dim=1)
return h
```
该模型接受节点特征张量 `x` 和边索引张量 `edge_index`,并输出特征向量 `h`。模型包含多个 GCN 层,每个 GCN 层将输入节点特征和边索引作为输入,并输出新的节点特征。之后,模型将每个 GCN 层得到的特征张量按照不同区域进行划分,并对每个区域内的节点特征进行注意力聚合,得到新的节点特征。最后,模型将不同阶的特征按照注意力权重进行聚合,得到最终的特征向量 `h`。
其中,GCN 层使用 PyTorch Geometric 中的 GCNConv 实现,注意力层包含三个全连接层,用于计算注意力权重,注意力聚合使用 softmax 实现,注意力权重通过学习得到。模型的具体实现可以根据实际需求进行修改。
阅读全文