onnx轉tensorrt
时间: 2023-08-09 16:11:13 浏览: 225
pytorch 将onnx模型转换为trt TensorRT模型
5星 · 资源好评率100%
您好!关于将ONNX转换为TensorRT,您可以按照以下步骤进行操作:
1. 首先,确保您已经安装了TensorRT和ONNX Runtime。您可以从NVIDIA官方网站下载和安装TensorRT,并使用pip安装ONNX Runtime。
2. 导出ONNX模型。如果您已经有一个ONNX模型,可以跳过这一步。如果没有,您可以使用ONNX的Python API将模型导出为ONNX格式。例如,对于PyTorch模型,您可以使用torch.onnx.export函数导出模型。
3. 使用TensorRT进行优化和推理。TensorRT提供了一个Python API,使您能够加载和优化ONNX模型。您可以使用trt.Builder创建一个TensorRT引擎,并通过添加输入和输出张量来定义网络结构。然后,您可以使用trt.ICudaEngine将构建的引擎序列化为文件。
4. 加载和推理。一旦引擎被构建和序列化,您可以使用TensorRT的C++或Python API加载它,并在推理时使用。您需要提供输入数据,并获取输出结果。
这些是将ONNX转换为TensorRT的一般步骤。具体的实现细节可能会因您使用的框架和工具而有所不同。您可以在TensorRT的官方文档和示例中找到更详细的信息和示例代码。
希望这些信息能对您有所帮助!如果您有任何其他问题,请随时提问。
阅读全文