Pendulum ppo实现
时间: 2023-12-06 19:04:25 浏览: 70
Pendulum是一个经典的控制问题,可以使用PPO算法来解决。下面是Pendulum PPO实现的一个示例代码:
```
import gym
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
# 定义神经网络模型
class Policy(tf.keras.Model):
def __init__(self, num_actions):
super(Policy, self).__init__()
self.dense1 = tf.keras.layers.Dense(64, activation='relu')
self.dense2 = tf.keras.layers.Dense(64, activation='relu')
self.dense3 = tf.keras.layers.Dense(num_actions)
def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
x = self.dense3(x)
return tfd.Categorical(logits=x)
# 定义PPO算法的损失函数
def compute_loss(model, old_probs, states, actions, rewards, discount_factor, epsilon):
# 计算新的策略分布
new_probs = model(states)
# 计算比率 r_t(theta) / r_{t-1}(theta)
ratios = tf.exp(new_probs.log_prob(actions) - old_probs.log_prob(actions))
# 计算重要性采样权重
weights = tf.minimum(ratios, 1 + epsilon) * tf.maximum(ratios, 1 - epsilon)
# 计算 PPO 的 surrogate loss
advantages = rewards - tf.reduce_mean(rewards)
surrogate_loss = -tf.reduce_mean(weights * advantages)
# 计算 entropy bonus
entropy_bonus = tf.reduce_mean(new_probs.entropy())
# 计算总的损失函数
total_loss = surrogate_loss - 0.01 * entropy_bonus
return total_loss
# 定义训练函数
def train(env, model, optimizer, num_epochs, batch_size, discount_factor, epsilon):
for epoch in range(num_epochs):
# 初始化环境
state = env.reset()
done = False
total_reward = 0
# 初始化回合数据
states = []
actions = []
rewards = []
old_probs = []
while not done:
# 选择动作
action_probs = model(tf.convert_to_tensor(state[None, :], dtype=tf.float32))
action = action_probs.sample()[0].numpy()
# 执行动作
next_state, reward, done, _ = env.step(action)
# 记录回合数据
states.append(state)
actions.append(action)
rewards.append(reward)
old_probs.append(action_probs.log_prob(action))
# 更新状态和累计回报
state = next_state
total_reward += reward
# 计算回合数据
states = tf.convert_to_tensor(states, dtype=tf.float32)
actions = tf.convert_to_tensor(actions, dtype=tf.float32)
rewards = tf.convert_to_tensor(rewards, dtype=tf.float32)
old_probs = tf.concat(old_probs, axis=0)
# 计算损失函数
with tf.GradientTape() as tape:
loss = compute_loss(model, old_probs, states, actions, rewards, discount_factor, epsilon)
# 反向传播更新参数
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
# 打印训练信息
print('Epoch: {}, Total Reward: {:.2f}'.format(epoch + 1, total_reward))
# 创建环境
env = gym.make('Pendulum-v0')
num_actions = env.action_space.n
# 创建模型和优化器
model = Policy(num_actions)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# 训练模型
train(env, model, optimizer, num_epochs=1000, batch_size=32, discount_factor=0.99, epsilon=0.2)
```
这段代码使用TensorFlow和TensorFlow Probability实现了Pendulum的PPO算法。其中,Policy类定义了一个神经网络模型,用于预测动作的概率分布;compute_loss函数定义了PPO算法的损失函数,包括surrogate loss和entropy bonus;train函数使用环境和模型训练PPO算法。在训练过程中,模型会不断地与环境交互,收集回合数据,并使用PPO算法更新模型参数。
阅读全文