如何用pytorch实现线性回归模型
时间: 2023-06-04 16:07:19 浏览: 128
可以使用PyTorch库中的torch.nn.Module和torch.optim来实现线性回归模型。具体实现方法如下:
1. 导入所需的库:
```
import torch
from torch import nn, optim
```
2. 定义线性回归模型:
```
class LinearRegressionModel(nn.Module):
def __init__(self, input_size, output_size):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
out = self.linear(x)
return out
```
3. 定义损失函数和优化器:
```
model = LinearRegressionModel(input_size, output_size)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
```
4. 训练模型:
```
for epoch in range(num_epochs):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print progress
if (epoch+1) % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
其中,inputs和labels是训练数据集和标签,num_epochs和learning_rate是超参数,需要手动调整。
阅读全文