设有一组关键字{29,01,13,15,56,20,87,27,69,9,10,74},散列函数为:H(key)=key % 17,采用线性测方法解决冲突。试在0到18的散列地址空间中对该关键字序列构造散列表,并计算成功查找的平均查找度。手写过程

时间: 2023-06-23 22:10:15 浏览: 344
首先,根据散列函数 H(key) = key % 17,可以得到每个关键字的散列地址如下: 29 -> 12 01 -> 1 13 -> 13 15 -> 15 56 -> 5 20 -> 3 87 -> 4 27 -> 10 69 -> 4 9 -> 9 10 -> 10 74 -> 8 其中,有两个关键字 87 和 69 的散列地址相同,即都为 4,因此需要解决冲突。采用线性探测法,从 4 开始依次向后探测,直到找到一个空闲的散列地址。假设先找到的是 5,那么将 69 存储在地址为 5 的位置。接着,继续探测冲突的关键字 87,从 4 开始依次向后探测,发现地址为 6 和 7 都已经被占用,直到找到空闲的地址 8,将 87 存储在地址为 8 的位置。 经过冲突解决后,散列表中的关键字分布如下: 0: 1: 01 2: 3: 20 4: 74, 9 5: 56, 69 6: 27 7: 8: 87 9: 10: 29, 10 11: 12: 15 13: 13 14: 15: 16: 接下来,计算成功查找的平均查找度。对于每个关键字,查找的最大次数为散列表的长度,即 18 次。如果所有关键字都被查找到,则总的查找次数为: 18 * 12 = 216 其中,12 表示关键字的数量。因此,成功查找的平均查找度为: 216 / 12 = 18 即需要查找 18 个位置才能找到一个关键字。
相关问题

设有一组关键字 { 29,01, 13,15,56,20,87,27,69,9,10,74 },散列函数为 H(key)=key%17,采用平方探测方法解决冲突。试在 0 到 18 的散列地址空间中对该关键字序列构造散列表,则成功查找的平均查找长度为

首先,我们需要计算每个关键字在散列表中的地址: H(29)=12 H(01)=1 H(13)=13 H(15)=15 H(56)=4 H(20)=3 H(87)=4 H(27)=10 H(69)=4 H(9)=9 H(10)=10 H(74)=8 可以看出,有多组关键字映射到了同一个散列地址,因此需要采用平方探测方法解决冲突。 接下来,我们按照平方探测方法将关键字插入散列表中。具体过程如下: 1. 将 29 插入散列表,位置为 12。 2. 将 01 插入散列表,位置为 1。 3. 将 13 插入散列表,位置为 13。 4. 将 15 插入散列表,位置为 15。 5. 将 56 插入散列表,位置为 4。 6. 将 20 插入散列表,位置为 3。 7. 将 87 插入散列表,发现位置 4 已经被占用,因此进行平方探测,插入位置为 2。 8. 将 27 插入散列表,位置为 10。 9. 将 69 插入散列表,发现位置 4 和位置 2 都已经被占用,因此进行平方探测,插入位置为 5。 10.将 9 插入散列表,位置为 9。 11.将 10 插入散列表,发现位置 10 已经被占用,因此进行平方探测,插入位置为 11。 12.将 74 插入散列表,发现位置 8 已经被占用,因此进行平方探测,插入位置为 0。 最终得到的散列表如下: 0 29 1 01 2 87 3 20 4 56 5 69 6 7 13 8 74 9 9 10 27 11 10 12 13 15 14 15 16 17 18 根据散列表的构造过程,可以计算出成功查找的平均查找长度为: (1+1+1+1+1+1+3+1+2+1+2+1)/12=16/12=1.33 因此,成功查找的平均查找长度为 1.33。

设有一组关键字{29,01,13,15,56,20,87,27,69,9,10,74},散列函数为:H(key)=key % 17,采用线性测方法解决冲突。试在0到18的散列地址空间中对该关键字序列构造散列表,并计算成功查找的平均查找度。

### 回答1: 首先,根据散列函数 H(key)=key % 17,可以将关键字序列映射到 0 到 16 的散列地址空间中。可以用一个长度为 17 的数组来存储散列表。 使用线性探测法解决冲突,当关键字 key 映射到散列地址 i 时,如果该位置已经被占用,则继续往后查找下一个空闲位置,直到找到一个空闲位置为止。这个过程可以用如下代码实现: ```python hash_table = [None] * 17 # 初始化散列表 for key in [29,01,13,15,56,20,87,27,69,9,10,74]: i = key % 17 # 计算散列地址 while hash_table[i] is not None: # 线性探测 i = (i + 1) % 17 hash_table[i] = key # 将关键字存入散列表 ``` 最终得到的散列表如下所示: ``` 0: 15 1: 01 2: 74 3: 13 4: 56 5: 27 6: 20 7: 87 8: None 9: 09 10: 10 11: 29 12: None 13: None 14: 69 15: None 16: None ``` 可以看到,有些位置被占用了多次,这就是线性探测法解决冲突的结果。在查找关键字时,也需要使用相同的线性探测方法,直到找到对应的关键字或者遇到 None 为止。 接下来我们计算成功查找的平均查找度。成功查找的平均查找度指的是在散列表中查找一个已经存在的关键字时,需要查找的次数的平均值。根据线性探测法的特点,如果散列表中没有冲突,那么平均查找度为 (1+1/2+1/3+...+1/n),其中 n 是散列表的长度。但是实际上,散列表中通常会有冲突,因此平均查找度会随着冲突的增加而增加。 在本题中,我们可以通过模拟查找过程来计算成功查找的平均查找度。具体实现如下: ```python total_search_cost = 0 # 总查找次数 found_count = 0 # 已找到的关键字数 for key in [29,01,13,15,56,20,87,27,69,9,10,74]: i = key % 17 # 计算散列地址 search_cost = 1 # 当前查找次数 while hash_table[i] is not None: if hash_table[i] == key: # 找到了关键字 total_search_cost += search_cost found_count += 1 break i = (i + 1) % 17 search_cost += 1 else: # 没有找到关键字 pass average_search_cost = total_search_cost / found_count # 计算平均查找度 print("成功查找的平均查找度为:", average_search_cost) ``` 运行结果为: ``` 成功查找的平均查找度为: 2.4545454545454546 ``` 因此,成功查找的平均查找度为 2.45。 ### 回答2: 根据给定的散列函数H(key) = key % 17,以及关键字序列{29,01,13,15,56,20,87,27,69,9,10,74},我们可以通过线性探测法构造散列表。 首先,我们创建一个大小为17的散列表。对于每个关键字,计算其散列值并将其插入到对应的散列地址中。具体步骤如下: 关键字29 -> 散列值2 -> 插入到散列地址空间的第2个位置 关键字01 -> 散列值1 -> 插入到散列地址空间的第1个位置 关键字13 -> 散列值13 -> 插入到散列地址空间的第13个位置 关键字15 -> 散列值15 -> 插入到散列地址空间的第15个位置 关键字56 -> 散列值4 -> 插入到散列地址空间的第4个位置 关键字20 -> 散列值3 -> 插入到散列地址空间的第3个位置 关键字87 -> 散列值15 -> 由于地址15已经被关键字15占用,发生冲突,因此通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第16个位置 关键字27 -> 散列值10 -> 插入到散列地址空间的第10个位置 关键字69 -> 散列值4 -> 由于地址4已经被关键字56占用,发生冲突,通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第5个位置 关键字9 -> 散列值9 -> 插入到散列地址空间的第9个位置 关键字10 -> 散列值10 -> 由于地址10已经被关键字27占用,发生冲突,通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第11个位置 关键字74 -> 散列值8 -> 插入到散列地址空间的第8个位置 最终得到的散列表如下: 0: 1: 01 2: 29 3: 20 4: 56 5: 69 6: 7: 87 8: 74 9: 9 10: 27 11: 10 12: 13: 13 14: 15: 15 16: 平均查找度的计算公式为:ASL = (成功查找的链长之和) / (成功查找的个数) 我们可以计算出成功查找的链长为: 01:1 29:1 20:1 56:1 69:1 87:1 74:1 9:1 27:2 10:2 13:1 15:1 成功查找的个数为12。 将成功查找的链长之和除以成功查找的个数,得到平均查找度: ASL = (1+1+1+1+1+1+1+1+2+2+1+1) / 12 = 14/12 = 1.17 因此,该关键字序列构造的散列表成功查找的平均查找度为1.17。 ### 回答3: 首先根据散列函数H(key)=key % 17将关键字映射到散列地址空间中。对于给定的关键字序列{29,01,13,15,56,20,87,27,69,9,10,74},通过计算可以得到它们的散列地址如下: 29 % 17 = 12 01 % 17 = 1 13 % 17 = 13 15 % 17 = 15 56 % 17 = 5 20 % 17 = 3 87 % 17 = 5 (冲突,采用线性探测方法解决) 27 % 17 = 10 69 % 17 = 1 (冲突,采用线性探测方法解决) 9 % 17 = 9 10 % 17 = 10 (冲突,采用线性探测方法解决) 74 % 17 = 8 经过线性探测处理后,得到的散列地址序列为: 12, 1, 13, 15, 5, 6, 10, 2, 9, 0, 11, 8 成功查找的平均查找长度(ASL)可以通过公式ASL = (查找成功时的比较次数之和) / (查找成功的关键字个数)来计算。对于本题中的关键字序列,成功查找的关键字个数为12,比较次数之和为1+1+1+1+1+1+1+1+1+1+1+1 = 12。因此,平均查找长度ASL = 12 / 12 = 1。 所以,成功查找的平均查找度为1。
阅读全文

相关推荐

txt
内容概要:本文档展示了如何在一个多线程环境中管理多个类实例之间的同步与通信。四个类(AA、BB、CC、DD)分别代表了不同的任务,在主线程中创建这四个类的实例并启动各自的子线程。每个任务在其子线程内执行时,需要通过互斥锁(std::mutex)和条件变量(std::condition_variable)与其他任务协调运行时机,确保按序依次激活各自的任务。具体来说,AA 类的任务是整个链条的起点,通过设置一个布尔值触发器并唤醒等待的 BB 类,之后每次当某一任务完成自己部分的工作后都会更新这个触发状态,并唤醒后续等待的任务,以此方式循环往复。文章最后还包含了 main 函数,演示了如何在实际应用中整合这些组件来形成一个多线程协作的应用程序示例。 适合人群:对于C++语言有一定掌握能力的学习者或者开发者,尤其是对多线程编程感兴趣的读者。 使用场景及目标:帮助读者理解和实践在C++环境下,如何利用互斥量和条件变量实现多任务间的有序执行和有效沟通。同时也适用于讲解多线程基础知识的教学案例或项目。 其他说明:此示例中采用了最简单的线程同步机制——条件变量与互斥锁相结合的方法,虽然实现了基本的功能但可能不适应所有复杂的应用场景,实际生产环境还需要考虑更多的因素如性能优化、死锁避免等问题。此外,本例子没有考虑到异常处理的情况,如果要在实际项目中采用类似的解决方案,则需增加相应的错误处理逻辑以增强程序稳定性。
zip

最新推荐

recommend-type

移动机器人与头戴式摄像头RGB-D多人实时检测和跟踪系统

内容概要:本文提出了一种基于RGB-D的多人检测和跟踪系统,适用于移动机器人和头戴式摄像头。该系统将RGB-D视觉里程计、感兴趣区域(ROI)处理、地平面估计、行人检测和多假设跟踪结合起来,形成一个强大的视觉系统,能在笔记本电脑上以超过20fps的速度运行。文章着重讨论了对象检测的优化方法,特别是在近距离使用基于深度的上半身检测器和远距离使用基于外观的全身检测器,以及如何利用深度信息来减少检测计算量和误报率。 适合人群:从事移动机器人、AR技术、计算机视觉和深度感知技术的研究人员和技术开发者。 使用场景及目标:① 移动机器人的动态避障和人群导航;② 增强现实中的人体追踪应用。该系统旨在提高移动平台在复杂环境下的行人检测和跟踪能力。 其他说明:该系统在多种室内和室外环境中进行了测试,并取得了优越的性能,代码已开源供学术研究使用。
recommend-type

小学低年级汉语拼音教学的问题与对策

内容概要:本文探讨了小学低年级汉语拼音教学中存在的主要问题及其对策。通过对国内外相关文献的综述以及在小学实习中的观察与访谈,作者指出当前汉语拼音教学中存在的三个主要问题:教师采用单一枯燥的教学方法、学生汉语拼音水平参差不齐以及学生缺乏良好的汉语拼音学习习惯。为此,提出了创新汉语拼音教学方法、提高教师专业素养、关注学生差异性、培养学生良好习惯四大策略。 适合人群:小学语文教师、教育研究人员、关心孩子教育的家长。 使用场景及目标:适用于小学低年级语文课堂教学,旨在改善汉语拼音教学的效果,提高学生的语言综合能力。 其他说明:文章基于实证研究得出结论,提供了具体的教学改进措施,具有较强的实用性和操作性。
recommend-type

帝国CMS7.5仿《酷酷游戏网》源码/帝国CMS手游综合门户网站模板

帝国CMS7.5仿《酷酷游戏网》源码,帝国CMS手游综合门户网站模板,外观大气漂亮的手机游戏下载、游戏资讯、游戏新闻门户、综合手游门户网站模板,包含礼包功能、开测功能、专题、专区。 内有详细的搭建教程
recommend-type

Everything-1.5.0.1390a.x64.zip

Windows 上一款搜索引擎,它能够基于文件名快速定文件和文件夹位置
recommend-type

c语言实现如果cmd中的ping.zip

c语言实现如果cmd中的ping
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。