产生MCMC链用MATLAB语言
时间: 2023-10-05 08:14:54 浏览: 86
MATLAB提供了几种方法来实现MCMC链,下面是其中一种基本的方法。
1.设定先验分布和样本空间
首先需要定义先验分布以及样本空间。以正态分布为例,假设均值为mu,标准差为sigma,则先验分布可以表示为:
```matlab
prior_mu = 0;
prior_sigma = 10;
```
样本空间可以表示为:
```matlab
mu = linspace(-10, 10, 100);
sigma = linspace(0.1, 50, 100);
```
2.编写似然函数
接下来,需要编写似然函数。假设我们有一个数据集x,我们可以使用正态分布作为似然函数。假设我们的数据服从均值为mu,标准差为sigma的正态分布,则似然函数可以表示为:
```matlab
function likelihood = compute_likelihood(mu, sigma, x)
likelihood = prod(normpdf(x, mu, sigma));
end
```
3.设置初始状态
为了开始MCMC链,需要设置初始状态。在这里,我们可以随机选择一个mu和sigma作为初始状态。例如:
```matlab
current_mu = -5;
current_sigma = 20;
```
4.定义步长
步长是指在链中移动时的步幅。在这里,假设步长为0.5。则可以定义步长为:
```matlab
step_size_mu = 0.5;
step_size_sigma = 0.5;
```
5.运行MCMC链
现在,可以开始运行MCMC链了。在每个迭代中,需要进行以下步骤:
a.从当前状态中抽取一个新状态
```matlab
prop_mu = current_mu + step_size_mu*randn();
prop_sigma = current_sigma + step_size_sigma*randn();
```
b.计算新状态的概率
```matlab
prior_prop = normpdf(prop_mu, prior_mu, prior_sigma)*normpdf(prop_sigma, prior_sigma, prior_sigma);
likelihood_prop = compute_likelihood(prop_mu, prop_sigma, x);
posterior_prop = prior_prop*likelihood_prop;
```
c.计算接受率
```matlab
acceptance_ratio = posterior_prop/posterior_current;
```
d.接受或拒绝新状态
```matlab
if rand() < acceptance_ratio
current_mu = prop_mu;
current_sigma = prop_sigma;
posterior_current = posterior_prop;
end
```
e.保存状态
```matlab
chain(i, :) = [current_mu, current_sigma];
```
完整的MCMC链代码如下所示:
```matlab
% Define prior distribution and sample space
prior_mu = 0;
prior_sigma = 10;
mu = linspace(-10, 10, 100);
sigma = linspace(0.1, 50, 100);
% Define likelihood function
x = [1.2, 3.7, -0.2, 4.1, -1.8, 0.9];
function likelihood = compute_likelihood(mu, sigma, x)
likelihood = prod(normpdf(x, mu, sigma));
end
% Set initial state
current_mu = -5;
current_sigma = 20;
% Set step size
step_size_mu = 0.5;
step_size_sigma = 0.5;
% Run MCMC chain
num_iterations = 10000;
posterior_current = normpdf(current_mu, prior_mu, prior_sigma)*normpdf(current_sigma, prior_sigma, prior_sigma)*compute_likelihood(current_mu, current_sigma, x);
chain = zeros(num_iterations, 2);
for i = 1:num_iterations
% Propose new state
prop_mu = current_mu + step_size_mu*randn();
prop_sigma = current_sigma + step_size_sigma*randn();
% Compute probability of new state
prior_prop = normpdf(prop_mu, prior_mu, prior_sigma)*normpdf(prop_sigma, prior_sigma, prior_sigma);
likelihood_prop = compute_likelihood(prop_mu, prop_sigma, x);
posterior_prop = prior_prop*likelihood_prop;
% Compute acceptance ratio
acceptance_ratio = posterior_prop/posterior_current;
% Accept or reject new state
if rand() < acceptance_ratio
current_mu = prop_mu;
current_sigma = prop_sigma;
posterior_current = posterior_prop;
end
% Save state
chain(i, :) = [current_mu, current_sigma];
end
```
注意,这只是MCMC链的基本方法。实际应用中,可能需要采用更复杂的技术来优化MCMC链的性能。
阅读全文