pso-bp python实现
时间: 2023-07-07 13:22:08 浏览: 104
PSO-BP 回归预测 python语言实现
5星 · 资源好评率100%
PSO-BP 是结合了粒子群优化算法和 BP 算法的神经网络算法,可以用于解决回归和分类问题。以下是 PSO-BP 的 Python 实现步骤:
1. 导入必要的库,包括 numpy、pandas 和 sklearn:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
```
2. 读取数据,将数据集分为训练集和测试集:
```python
data = pd.read_csv('data.csv')
X = data.iloc[:,:-1].values
y = data.iloc[:,-1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
3. 定义神经网络模型的参数,包括输入层、隐藏层和输出层的神经元个数,以及 PSO 算法的参数:
```python
input_layer_size = X_train.shape[1]
hidden_layer_size = 10
output_layer_size = 1
swarm_size = 20
max_iter = 100
w = 0.7
c1 = 1.4
c2 = 1.4
```
4. 初始化粒子群和速度矩阵,随机初始化权重和偏置:
```python
def initialize():
swarm = np.zeros((swarm_size, (input_layer_size + 1) * hidden_layer_size + \
(hidden_layer_size + 1) * output_layer_size))
velocity = np.zeros((swarm_size, (input_layer_size + 1) * hidden_layer_size + \
(hidden_layer_size + 1) * output_layer_size))
for i in range(swarm_size):
theta1 = np.random.rand(input_layer_size+1, hidden_layer_size)
theta2 = np.random.rand(hidden_layer_size+1, output_layer_size)
swarm[i,:] = np.hstack((theta1.ravel(), theta2.ravel()))
return swarm, velocity
```
5. 计算粒子的适应度,即神经网络的误差:
```python
def fitness(swarm):
fitness = np.zeros(swarm_size)
for i in range(swarm_size):
theta1 = swarm[i,:hidden_layer_size * (input_layer_size + 1)].reshape((input_layer_size+1, hidden_layer_size))
theta2 = swarm[i,hidden_layer_size * (input_layer_size + 1):].reshape((hidden_layer_size+1, output_layer_size))
a1 = np.hstack((np.ones((X_train.shape[0],1)), X_train))
z2 = np.dot(a1, theta1)
a2 = np.hstack((np.ones((z2.shape[0],1)), sigmoid(z2)))
z3 = np.dot(a2, theta2)
h = sigmoid(z3)
J = np.sum((h - y_train)**2)/2/X_train.shape[0]
fitness[i] = J
return fitness
```
6. 更新粒子的位置和速度,计算新的适应度:
```python
def update(swarm, velocity, pbest, gbest):
for i in range(swarm_size):
r1 = np.random.rand((input_layer_size+1) * hidden_layer_size + \
(hidden_layer_size+1) * output_layer_size)
r2 = np.random.rand((input_layer_size+1) * hidden_layer_size + \
(hidden_layer_size+1) * output_layer_size)
velocity[i,:] = w * velocity[i,:] + c1 * r1 * (pbest[i,:] - swarm[i,:]) + \
c2 * r2 * (gbest - swarm[i,:])
swarm[i,:] = swarm[i,:] + velocity[i,:]
fitness_new = fitness(swarm)
return swarm, velocity, fitness_new
```
7. 运行 PSO-BP 算法,得到最优权重和偏置:
```python
swarm, velocity = initialize()
fitness_current = fitness(swarm)
pbest = swarm.copy()
gbest_index = np.argmin(fitness_current)
gbest = swarm[gbest_index,:]
for i in range(max_iter):
swarm, velocity, fitness_new = update(swarm, velocity, pbest, gbest)
pbest_index = np.where(fitness_new < fitness_current)
pbest[pbest_index,:] = swarm[pbest_index,:]
fitness_current[pbest_index] = fitness_new[pbest_index]
gbest_index = np.argmin(fitness_current)
gbest = swarm[gbest_index,:]
```
8. 使用最优权重和偏置构建神经网络模型,并在测试集上进行预测:
```python
theta1 = gbest[:hidden_layer_size * (input_layer_size + 1)].reshape((input_layer_size+1, hidden_layer_size))
theta2 = gbest[hidden_layer_size * (input_layer_size + 1):].reshape((hidden_layer_size+1, output_layer_size))
a1 = np.hstack((np.ones((X_test.shape[0],1)), X_test))
z2 = np.dot(a1, theta1)
a2 = np.hstack((np.ones((z2.shape[0],1)), sigmoid(z2)))
z3 = np.dot(a2, theta2)
h = sigmoid(z3)
y_pred = np.round(h)
```
完整的 PSO-BP 神经网络实现代码如下:
阅读全文