pso-bp多分类预测python
时间: 2023-07-28 12:07:19 浏览: 102
PSO-BP算法是一种常用的神经网络训练算法,结合了粒子群优化算法和反向传播算法,可以用于多分类预测问题。
以下是使用Python实现PSO-BP多分类预测的基本步骤:
1. 导入所需的库和数据集
``` python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
```
2. 数据预处理
``` python
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1)
# 对标签进行One-hot编码
enc = OneHotEncoder()
y = enc.fit_transform(y).toarray()
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
3. 定义PSO-BP算法
``` python
# 定义PSO-BP算法类
class PSO_BP():
def __init__(self, n_input, n_hidden, n_output):
self.n_input = n_input
self.n_hidden = n_hidden
self.n_output = n_output
self.w1 = np.random.randn(n_input, n_hidden)
self.b1 = np.random.randn(n_hidden)
self.w2 = np.random.randn(n_hidden, n_output)
self.b2 = np.random.randn(n_output)
self.v_w1 = np.random.randn(n_input, n_hidden)
self.v_b1 = np.random.randn(n_hidden)
self.v_w2 = np.random.randn(n_hidden, n_output)
self.v_b2 = np.random.randn(n_output)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def softmax(self, x):
exp_x = np.exp(x)
return exp_x / np.sum(exp_x, axis=1, keepdims=True)
def forward(self, X):
self.z1 = np.dot(X, self.w1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.w2) + self.b2
self.a2 = self.softmax(self.z2)
return self.a2
def loss(self, X, y):
y_pred = self.forward(X)
loss = -np.sum(y * np.log(y_pred))
return loss
def accuracy(self, X, y):
y_pred = self.predict(X)
acc = np.sum(y_pred == np.argmax(y, axis=1)) / len(y)
return acc
def predict(self, X):
y_pred = self.forward(X)
return np.argmax(y_pred, axis=1)
def backward(self, X, y):
y_pred = self.forward(X)
delta3 = y_pred - y
delta2 = np.dot(delta3, self.w2.T) * self.a1 * (1 - self.a1)
grad_w2 = np.dot(self.a1.T, delta3)
grad_b2 = np.sum(delta3, axis=0)
grad_w1 = np.dot(X.T, delta2)
grad_b1 = np.sum(delta2, axis=0)
return grad_w1, grad_b1, grad_w2, grad_b2
def update(self, grad_w1, grad_b1, grad_w2, grad_b2, lr, w_decay, v_decay, v_scale):
self.v_w1 = v_decay * self.v_w1 - lr * (grad_w1 + w_decay * self.w1)
self.v_b1 = v_decay * self.v_b1 - lr * grad_b1
self.v_w2 = v_decay * self.v_w2 - lr * (grad_w2 + w_decay * self.w2)
self.v_b2 = v_decay * self.v_b2 - lr * grad_b2
self.w1 += v_scale * self.v_w1
self.b1 += v_scale * self.v_b1
self.w2 += v_scale * self.v_w2
self.b2 += v_scale * self.v_b2
def train(self, X, y, lr=0.01, w_decay=0.0, v_decay=0.99, v_scale=0.1, n_epoch=1000):
for i in range(n_epoch):
grad_w1, grad_b1, grad_w2, grad_b2 = self.backward(X, y)
self.update(grad_w1, grad_b1, grad_w2, grad_b2, lr, w_decay, v_decay, v_scale)
if i % 100 == 0:
loss = self.loss(X, y)
acc = self.accuracy(X, y)
print('Epoch {}: loss={}, accuracy={}'.format(i, loss, acc))
```
4. 训练模型并测试
``` python
# 初始化模型
model = PSO_BP(n_input=4, n_hidden=10, n_output=3)
# 训练模型
model.train(X_train, y_train, lr=0.01, w_decay=0.0, v_decay=0.99, v_scale=0.1, n_epoch=1000)
# 测试模型
acc = model.accuracy(X_test, y_test)
print('Test accuracy:', acc)
```
通过以上步骤,即可使用PSO-BP算法进行多分类预测。需要注意的是,不同的数据集和模型可能需要不同的参数设置,需要进行适当的调整。
阅读全文