HAL_I2C_Master_Transmit(&hi2c1, ADS1115_InitStruct->ADDRESS, Writebuff, 3, 100);

时间: 2024-04-23 14:24:17 浏览: 16
这行代码使用了STM32的HAL库函数`HAL_I2C_Master_Transmit`向ADS1115芯片写入数据。其中,`&hi2c1`是I2C总线的句柄,`ADS1115_InitStruct->ADDRESS`是ADS1115芯片的I2C地址,`Writebuff`是要写入的数据缓冲区,`3`是要写入的数据字节数,`100`是超时时间(单位为毫秒)。这行代码的作用是将`Writebuff`缓冲区中的3个字节数据通过I2C总线发送给ADS1115芯片,并等待芯片的响应。
相关问题

void ADS1115_ReadRawData(ADS1115_InitTypeDefine *ADS1115_InitStruct)//ADS1115_RawData { unsigned char Result[2]; uint8_t Writebuff[1]; Writebuff[0] = ADS1115_Pointer_ConverReg; HAL_I2C_Master_Transmit(&hi2c1, ADS1115_InitStruct->ADDRESS, Writebuff, 3, 100); HAL_I2C_Master_Receive(&hi2c1, ADS1115_InitStruct->ADDRESS , Result, 2, 100); ADS1115_InitStruct->ADS1115_RawData[ADS1115_InitStruct->CHANNEL] = (int16_t) (((Result[0] << 8) & 0xFF00) | (Result[1] & 0xFF)); //return Writebuff; }

这段代码是用于读取 ADS1115 模块中的原始数据,并将其存储到 `ADS1115_InitTypeDefine` 结构体变量中的 `ADS1115_RawData` 数组中。下面是对这段代码的解释: ```c void ADS1115_ReadRawData(ADS1115_InitTypeDefine *ADS1115_InitStruct) { unsigned char Result[2]; uint8_t Writebuff[1]; Writebuff[0] = ADS1115_Pointer_ConverReg; HAL_I2C_Master_Transmit(&hi2c1, ADS1115_InitStruct->ADDRESS, Writebuff, 3, 100); HAL_I2C_Master_Receive(&hi2c1, ADS1115_InitStruct->ADDRESS , Result, 2, 100); ADS1115_InitStruct->ADS1115_RawData[ADS1115_InitStruct->CHANNEL] = (int16_t)(((Result[0] << 8) & 0xFF00) | (Result[1] & 0xFF)); } ``` 首先定义了一个 `Result` 数组变量和一个 `Writebuff` 数组变量。`Result` 数组用于存储从 ADS1115 模块中读取到的数据,`Writebuff` 数组用于向 ADS1115 模块写入数据。 接着将 `Writebuff[0]` 赋值为 `ADS1115_Pointer_ConverReg`,即将转换寄存器地址写入 `Writebuff` 数组中。 通过 `HAL_I2C_Master_Transmit` 函数向 ADS1115 模块发送 `Writebuff` 数组中的数据,这里传输的数据长度为 3 个字节。该函数的返回值表示传输是否成功,如果返回值不为 `HAL_OK`,则表示传输失败。 然后通过 `HAL_I2C_Master_Receive` 函数读取 ADS1115 模块中转换结果的数据,将读取到的数据存储到 `Result` 数组中。该函数的返回值表示读取是否成功,如果返回值不为 `HAL_OK`,则表示读取失败。 最后将读取到的数据进行处理,将其转换为有符号的 16 位整数,并存储到 `ADS1115_InitStruct` 结构体变量中的 `ADS1115_RawData` 数组中的对应元素中。

void ADS1115_ReadRawData(ADS1115_InitTypeDefine *ADS1115_InitStruct)//ADS1115_RawData { unsigned char Result[2]; uint8_t Writebuff[1]; Writebuff[0] = ADS1115_Pointer_ConverReg; HAL_I2C_Master_Transmit(&hi2c1, ADS1115_InitStruct->ADDRESS, Writebuff, 3, 100); HAL_I2C_Master_Receive(&hi2c1, ADS1115_InitStruct->ADDRESS , Result, 2, 100); ADS1115_InitStruct->ADS1115_RawData[ADS1115_InitStruct->CHANNEL] = (int16_t) (((Result[0] << 8) & 0xFF00) | (Result[1] & 0xFF)); //return Writebuff; // ADS1115_ReadRawData(&ADS1115_InitStruct); // 读取原始数据 }怎么输出所得的数据

要输出所获取的数据,您可以使用printf函数或类似的函数来打印数据。以下是一个示例代码: ``` void ADS1115_ReadRawData(ADS1115_InitTypeDefine *ADS1115_InitStruct) { unsigned char Result[2]; uint8_t Writebuff[1]; Writebuff[0] = ADS1115_Pointer_ConverReg; HAL_I2C_Master_Transmit(&hi2c1, ADS1115_InitStruct->ADDRESS, Writebuff, 3, 100); HAL_I2C_Master_Receive(&hi2c1, ADS1115_InitStruct->ADDRESS , Result, 2, 100); ADS1115_InitStruct->ADS1115_RawData[ADS1115_InitStruct->CHANNEL] = (int16_t) (((Result[0] << 8) & 0xFF00) | (Result[1] & 0xFF)); // 打印获取到的数据 printf("获取到的原始数据为:%d\n", ADS1115_InitStruct->ADS1115_RawData[ADS1115_InitStruct->CHANNEL]); } ``` 在上面的示例中,我们使用printf函数打印获取到的原始数据。我们使用%d格式说明符来打印整数类型的数据。您可以根据需要使用其他格式说明符来打印不同类型的数据。

相关推荐

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

setuptools-39.0.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于JSP实现的在线仓库管理系统源码.zip

这个是一个JSP实现的在线仓库管理系统,管理员角色包含以下功能:仓库管理员登录,货品&amp;类别信息管理,采购信息管理,出库和入库管理,财务信息管理,管理员管理等功能。 本项目实现的最终作用是基于JSP实现的在线仓库管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 仓库管理员登录 - 出库和入库管理 - 管理员管理 - 财务信息管理 - 货品&类别信息管理 - 采购信息管理
recommend-type

基于springboot的房屋租赁系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。