设计一个基于STM32F401VE的DAC输出正弦波程序,要求程序完整

时间: 2024-02-12 20:06:00 浏览: 27
好的,下面是基于STM32F401VE的DAC输出正弦波程序,供您参考: ``` #include "stm32f4xx.h" #include "math.h" #define PI 3.14159265358979323846f #define SAMPLE_RATE 10000.0f #define BUFFER_SIZE 100 // 定义DAC的输出缓冲区 static uint16_t DAC_Buffer[BUFFER_SIZE]; // 正弦波参数 static float frequency = 1000.0f; static float amplitude = 2047.0f; // 初始化DAC void DAC_Init(void) { // 使能DAC时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); // 初始化DAC配置结构体 DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0; DAC_Init(DAC_Channel_1, &DAC_InitStructure); // 使能DAC通道 DAC_Cmd(DAC_Channel_1, ENABLE); } // 初始化定时器 void TIM_Init(void) { // 使能定时器时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 初始化定时器配置结构体 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = (uint32_t)(SystemCoreClock / SAMPLE_RATE) - 1; TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); // 使能定时器更新事件中断 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); // 启动定时器 TIM_Cmd(TIM2, ENABLE); } // 初始化GPIO void GPIO_Init(void) { // 使能GPIO时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // 初始化GPIO配置结构体 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } // 初始化中断 void NVIC_Init(void) { // 初始化NVIC配置结构体 NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } // 生成正弦波 void Generate_SinWave(void) { for (uint32_t i = 0; i < BUFFER_SIZE; i++) { float sample = amplitude * sin(2.0f * PI * frequency * (float)i / SAMPLE_RATE) + amplitude; DAC_Buffer[i] = (uint16_t)sample; } } int main(void) { // 初始化DAC、定时器、GPIO、中断 DAC_Init(); TIM_Init(); GPIO_Init(); NVIC_Init(); // 生成正弦波 Generate_SinWave(); while (1) { } } // 定时器中断处理函数 void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { // 清除定时器中断标志位 TIM_ClearITPendingBit(TIM2, TIM_IT_Update); // 将DAC输出缓冲区中的数据写入DAC数据寄存器 DAC_SetChannel1Data(DAC_Align_12b_R, DAC_Buffer[TIM2->CNT % BUFFER_SIZE]); } } ``` 该程序通过STM32F401VE的DAC输出正弦波。程序的实现过程如下: 1. 定义了常量PI、采样率SAMPLE_RATE和缓冲区大小BUFFER_SIZE。 2. 定义了输出缓冲区DAC_Buffer。 3. 定义了正弦波参数frequency和amplitude。 4. 实现了DAC的初始化函数DAC_Init(),通过调用RCC_APB1PeriphClockCmd()函数使能DAC时钟,然后初始化DAC配置结构体DAC_InitStructure并通过调用DAC_Init()函数初始化DAC通道1。 5. 实现了定时器的初始化函数TIM_Init(),通过调用RCC_APB1PeriphClockCmd()函数使能定时器时钟,然后初始化定时器配置结构体TIM_TimeBaseStructure并通过调用TIM_TimeBaseInit()函数初始化定时器。在这里,定时器的重载值设为了采样率SAMPLE_RATE的倒数减一,从而实现了每秒采样SAMPLE_RATE次。最后,通过调用TIM_ITConfig()函数使能定时器更新事件中断,通过调用TIM_Cmd()函数启动定时器。 6. 实现了GPIO的初始化函数GPIO_Init(),通过调用RCC_AHB1PeriphClockCmd()函数使能GPIO时钟,然后初始化GPIO配置结构体GPIO_InitStructure并通过调用GPIO_Init()函数初始化GPIOA4为模拟输入模式。 7. 实现了中断的初始化函数NVIC_Init(),通过调用NVIC_PriorityGroupConfig()函数设置NVIC的优先级分组,然后初始化NVIC配置结构体NVIC_InitStructure并通过调用NVIC_Init()函数初始化TIM2的更新事件中断。 8. 实现了生成正弦波的函数Generate_SinWave(),通过循环遍历DAC输出缓冲区并使用正弦函数计算每个采样点的值,并将结果存储在DAC输出缓冲区中。 9. 在main()函数中,依次调用DAC_Init()、TIM_Init()、GPIO_Init()和NVIC_Init()函数初始化DAC、定时器、GPIO和中断,然后调用Generate_SinWave()函数生成正弦波。最后,程序进入一个无限循环中。 10. 在定时器中断处理函数TIM2_IRQHandler()中,检查定时器更新事件中断标志位是否被触发,如果是,清除中断标志位,然后将DAC输出缓冲区中的数据写入DAC数据寄存器。 需要注意的是,该程序只实现了单个正弦波的输出。如果需要输出多个正弦波,可以在Generate_SinWave()函数中添加多个正弦波的参数,并将它们相加。

相关推荐

最新推荐

recommend-type

用Proteus8.9自带STM32F401VE的Controller仿真STM32F407ZGT6,F429IGT6

一, 目前得到的 Proteus8.9版本软件能够支持的...但STM32F401VE的固件库基于Cortex-M4,笔者就想利用Proteus8.9版本软件现有的STM32F401VE的固件库,对F407,F429系列芯片通过Proteus VSM Studio进行仿真实验应用。
recommend-type

STM32串口发送注意问题

在STM32F103xx单片机上,发送一个字节,DR为空,TXE置位,移位寄存器也为空时,置位TC标志。这个时候可以向TC位写0,清除TC标志。但是,在STM32F030xx单片机上,情况有所不同。在这台单片机上,无论是否发送字节,...
recommend-type

STM32的使用之SPI通信DMA模式

STM32的SPI通信DMA模式 在本文中,我们将深入探讨STM32微控制器中的SPI通信DMA模式。SPI(Serial Peripheral Interface)是一种同步串行通信协议,广泛应用于嵌入式系统中。而DMA(Direct Memory Access)则是一种...
recommend-type

在STM32上通过UART+DMA实现One-Wire总线

DMA方式实现One-wire总线读写的原理是使用DMA传输存储器地址指向一个宽度为byte容量为8的缓冲。然后,对于byte写操作,将要写入的byte通过上述的位写操作将每一bit转换成发送数据byte顺序存入缓冲,启动两个DMA,...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依