基于ORL库使用pca人脸识别匹配系统python实现代码
时间: 2024-12-14 10:24:37 浏览: 26
基于ORL人脸库实现PCA(主成分分析)的人脸识别匹配系统的Python代码通常包含以下几个步骤:
首先,你需要安装必要的库,如`numpy`, `matplotlib`, 和 `scikit-image`等。然后,你可以按照以下步骤编写代码:
```python
import numpy as np
from sklearn.decomposition import PCA
from skimage.io import imread
from matplotlib import pyplot as plt
# 加载ORL人脸库(需要先下载并放在正确的路径)
orl_faces_dir = 'path_to_orl_dataset'
face_images = [imread(f) for f in orl_faces_dir + '/*.pgm']
# 归一化图像数据
face_images = np.array(face_images) / 255.
# 使用PCA进行特征提取
n_components = 100 # 可以调整这个值以减少维度
pca = PCA(n_components=n_components)
faces_projected = pca.fit_transform(face_images)
# 对比两个脸部特征向量,计算欧氏距离判断相似度
def compare_faces(face1, face2):
return np.linalg.norm(pca.transform([face1]) - pca.transform([face2]))
# 示例:比较两张图片的相似度
image_path1 = 'path_to_face1.pgm'
image_path2 = 'path_to_face2.pgm'
image1 = imread(image_path1)
image2 = imread(image_path2)
similarity = compare_faces(image1.flatten(), image2.flatten())
print(f"Similarity between {image_path1} and {image_path2}: {similarity}")
# 显示降维后的前几个样本
plt.figure(figsize=(8, 4))
for i, (name, img) in enumerate(zip(['Face ' + str(i+1) for i in range(5)], faces_projected[:5])):
plt.subplot(1, 5, i+1)
plt.imshow(img.reshape((92, 112)), cmap='gray')
plt.title(name)
plt.show()
阅读全文