逐句解释以下代码 class Order: def __init__(self, order_id, boxes): self.order_id = order_id self.boxes = boxes class Box: def __init__(self, box_id, length, width, height): self.box_id = box_id self.length = length self.width = width self.height = height def find_matching_boxes(order): # Define available box sizes available_boxes = [ Box(1, 10, 10, 10), Box(2, 20, 20, 20), Box(3, 30, 30, 30) ] # Initialize list to store matching boxes for each order box matching_boxes = [] # Loop through each order box for box in order.boxes: # Initialize list to store boxes that match the current order box current_matching_boxes = [] # Loop through each available box size for available_box in available_boxes: # Check if the available box size matches the current order box if (available_box.length >= box.length and available_box.width >= box.width and available_box.height >= box.height): current_matching_boxes.append(available_box) # Add the list of matching boxes for the current order box to the overall list matching_boxes.append(current_matching_boxes) return matching_boxes # Example usage order = Order(1, [ Box(1, 15, 15, 15), Box(2, 25, 25, 25), Box(3, 35, 35, 35)]) matching_boxes = find_matching_boxes(order) print(matching_boxes)

时间: 2024-02-10 13:30:26 浏览: 20
这段代码定义了两个类,分别为 Order 和 Box。Order 类包含两个属性:order_id 和 boxes,其中 boxes 是一个列表,包含多个 Box 对象。Box 类包含四个属性:box_id、length、width 和 height,用于表示盒子的编号、长度、宽度和高度。 在 Box 类中,定义了一个名为 find_matching_boxes 的方法,该方法接受一个 Order 对象作为参数,并返回一个列表,其中每个元素都是一个列表,包含与 Order 中每个 Box 对象匹配的 Box 对象。在该方法中,定义了一个列表 available_boxes,其中包含了三种不同尺寸的盒子。然后,通过循环遍历 Order 中的每个 Box 对象,再通过循环遍历 available_boxes 中的每个 Box 对象,判断当前 available_box 是否与当前 Order 的 Box 匹配,如果是,则将该 Box 对象添加到 current_matching_boxes 列表中。最后将该列表添加到 matching_boxes 列表中,并返回最终的匹配结果。 在代码的最后,创建了一个 Order 对象,并调用 find_matching_boxes 方法,将匹配结果打印出来。
相关问题

逐句解释一下import numpy as npclass Perceptron: def __init__(self, num_classes, input_size, lr=0.1, epochs=1000): self.num_classes = num_classes self.input_size = input_size self.lr = lr self.epochs = epochs self.weights = np.zeros((num_classes, input_size)) self.biases = np.zeros(num_classes) def train(self, X, y): for epoch in range(self.epochs): for i in range(X.shape[0]): x = X[i] target = y[i] output = self.predict(x) if output != target: self.weights[target] += self.lr * x self.biases[target] += self.lr self.weights[output] -= self.lr * x self.biases[output] -= self.lr def predict(self, x): scores = np.dot(self.weights, x) + self.biases return np.argmax(scores)if __name__ == '__main__': X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]]) y = np.array([0, 0, 1, 1]) num_classes = 2 input_size = 2 perceptron = Perceptron(num_classes, input_size) perceptron.train(X, y) print(perceptron.predict(np.array([1, 2])))

1. `import numpy as np`:导入NumPy库并将其命名为`np`,使得在代码中使用NumPy函数和数组时可以更方便地调用。 2. `class Perceptron:`:定义一个名为`Perceptron`的类。 3. `def __init__(self, num_classes, input_size, lr=0.1, epochs=1000):`:定义一个名为`__init__`的方法,用于初始化`Perceptron`类的实例。该方法包含四个参数:`num_classes`表示分类数目,`input_size`表示每个输入样本的特征数,`lr`表示学习率(默认值为0.1),`epochs`表示训练次数(默认值为1000)。 4. `self.num_classes = num_classes`:将传入的`num_classes`参数赋值给`Perceptron`类的实例变量`num_classes`。 5. `self.input_size = input_size`:将传入的`input_size`参数赋值给`Perceptron`类的实例变量`input_size`。 6. `self.lr = lr`:将传入的`lr`参数赋值给`Perceptron`类的实例变量`lr`。 7. `self.epochs = epochs`:将传入的`epochs`参数赋值给`Perceptron`类的实例变量`epochs`。 8. `self.weights = np.zeros((num_classes, input_size))`:将一个大小为`(num_classes, input_size)`的全零数组赋值给`Perceptron`类的实例变量`weights`,用于存储神经元的权重。 9. `self.biases = np.zeros(num_classes)`:将一个大小为`num_classes`的全零数组赋值给`Perceptron`类的实例变量`biases`,用于存储神经元的偏置。 10. `def train(self, X, y):`:定义一个名为`train`的方法,用于训练神经元模型。该方法包含两个参数:`X`表示输入样本的特征矩阵,`y`表示输入样本的标签向量。 11. `for epoch in range(self.epochs):`:使用`for`循环,遍历所有训练次数。 12. `for i in range(X.shape[0]):`:使用`for`循环,遍历所有输入样本。 13. `x = X[i]`:将当前输入样本的特征向量赋值给变量`x`。 14. `target = y[i]`:将当前输入样本的标签赋值给变量`target`。 15. `output = self.predict(x)`:调用`predict`方法,根据当前输入样本的特征向量预测输出标签,并将结果赋值给变量`output`。 16. `if output != target:`:如果预测输出标签与实际标签不同: 17. `self.weights[target] += self.lr * x`:将目标类别的权重向量加上当前输入样本的特征向量与学习率的乘积。 18. `self.biases[target] += self.lr`:将目标类别的偏置加上学习率。 19. `self.weights[output] -= self.lr * x`:将输出类别的权重向量减去当前输入样本的特征向量与学习率的乘积。 20. `self.biases[output] -= self.lr`:将输出类别的偏置减去学习率。 21. `def predict(self, x):`:定义一个名为`predict`的方法,用于根据输入样本的特征向量预测输出标签。该方法包含一个参数`x`,表示输入样本的特征向量。 22. `scores = np.dot(self.weights, x) + self.biases`:将权重向量与输入样本的特征向量做点积,再加上偏置向量,得到一个分数向量。该分数向量包含每个类别的分数。 23. `return np.argmax(scores)`:返回分数向量中分数最高的类别的索引,即为预测输出标签。 24. `if __name__ == '__main__':`:检查当前模块是否为主模块。 25. `X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]])`:定义一个大小为`(4, 2)`的NumPy数组,包含四个输入样本的特征向量。 26. `y = np.array([0, 0, 1, 1])`:定义一个大小为`(4,)`的NumPy数组,包含四个输入样本的标签。 27. `num_classes = 2`:定义变量`num_classes`,表示分类数目为2。 28. `input_size = 2`:定义变量`input_size`,表示每个输入样本的特征数为2。 29. `perceptron = Perceptron(num_classes, input_size)`:创建一个`Perceptron`类的实例`perceptron`,传入分类数目和每个输入样本的特征数。 30. `perceptron.train(X, y)`:调用`train`方法,训练神经元模型。 31. `print(perceptron.predict(np.array([1, 2])))`:创建一个大小为`(2,)`的NumPy数组作为输入样本的特征向量,调用`predict`方法,预测输出标签,并将结果打印出来。

class iStr(str): def __init__(self, *args): self.lowered = str.lower(self) def __repr__(self): return '%s(%s)' % (type(self).__name__, str.__repr__(self)) def __hash__(self): return hash(self._lowered) def lower(self): return self._lowered def _make_case_insensitive(name): str_meth = getattr(str, name) def x(self, other, *args): try: other = other.lower() except (TypeError, AttributeError, ValueError): pass return str_meth(self._lowered, other, *args) setattr(iStr, name, x) for name in 'eq lt le gt gt ne contains'.split(): _make_case_insensitive('__%s__' % name) for name in 'count endswith find index rfind rindex startswith'.split(): _make_case_insensitive(name) del _make_case_insensitive 将以上代码逐句逐行进行详细解释,超级超级详细,并且告知该如何输出,举例输出并打印

这段代码定义了一个名为`iStr`的自定义字符串类,它是对内置字符串类`str`的扩展,实现了不区分大小写的字符串比较和操作。 让我们逐句逐行详细解释代码: ```python class iStr(str): ``` 这段代码定义了一个名为`iStr`的类,它继承自内置字符串类`str`。 ```python def __init__(self, *args): self.lowered = str.lower(self) ``` 这是`iStr`类的初始化方法。它接受任意数量的参数,并将调用内置字符串类的`lower`方法将字符串转换为小写形式,并将结果存储在实例变量`lowered`中。 ```python def __repr__(self): return '%s(%s)' % (type(self).__name__, str.__repr__(self)) ``` 这是`iStr`类的字符串表示方法。它返回一个表示该实例的字符串,格式为类名加上原始字符串的表示形式。 ```python def __hash__(self): return hash(self._lowered) ``` 这是`iStr`类的哈希方法。它返回实例的哈希值,使用小写形式的字符串进行哈希运算。 ```python def lower(self): return self._lowered ``` 这是`iStr`类的`lower`方法。它返回实例的小写形式字符串。 ```python def _make_case_insensitive(name): str_meth = getattr(str, name) def x(self, other, *args): try: other = other.lower() except (TypeError, AttributeError, ValueError): pass return str_meth(self._lowered, other, *args) setattr(iStr, name, x) ``` 这是一个辅助函数`_make_case_insensitive`,它用于创建不区分大小写的字符串操作方法。它接受一个字符串方法的名称作为参数。 在函数内部,首先使用`getattr`函数获取内置字符串类`str`中的对应方法。 然后,定义了一个名为`x`的内部函数,它接受实例`self`、其他参数`other`和任意数量的额外参数。在函数内部,尝试将`other`转换为小写形式,并调用原始字符串方法来进行比较或操作。 最后,使用`setattr`函数将新定义的方法`x`添加到`iStr`类中,名称与原始字符串方法的名称相同。 ```python for name in 'eq lt le gt gt ne contains'.split(): _make_case_insensitive('__%s__' % name) ``` 这个循环使用辅助函数`_make_case_insensitive`创建了一系列不区分大小写的比较操作方法,包括等于、小于、小于等于、大于、大于等于、不等于和包含。 ```python for name in 'count endswith find index rfind rindex startswith'.split(): _make_case_insensitive(name) ``` 这个循环使用辅助函数`_make_case_insensitive`创建了一系列不区分大小写的字符串操作方法,包括计数、以什么结尾、查找、索引等。 ```python del _make_case_insensitive ``` 最后,删除了辅助函数`_make_case_insensitive`,以避免在后续代码中被误用。 现在,让我们来看一个使用`iStr`类的示例: ```python s = iStr("Hello World") print(s) # 输出:iStr('Hello World') print(s.lower()) # 输出:hello world print(s.startswith("hello")) # 输出:True print(s.contains("WORLD")) # 输出:True print(s.count("o")) # 输出:2 ``` 在这个示例中,我们创建了一个`iStr`类的实例`s`,并调用了它的一些方法来进行字符串比较和操作。由于`iStr`类实现了不区分大小写的功能,所以不论传入的参数是大写还是小写,都能正确地进行比较和操作,并返回预期的结果。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩