python实现CMA-ES
时间: 2023-07-07 11:19:00 浏览: 178
pycma:CMA-ES的Python实现
CMA-ES是一种优化算法,主要用于解决连续优化问题。下面给出使用Python实现CMA-ES算法的基本步骤:
1. 安装必要的库:numpy, scipy
2. 定义目标函数,即待优化的函数。
3. 初始化CMA-ES算法的参数。包括种群大小,初始种群分布,步长,收敛阈值等。
4. 根据CMA-ES算法公式更新种群,并计算适应度函数值。
5. 判断是否达到收敛条件,如果达到则输出最优解,否则重复执行第4步。
下面是一个简单的CMA-ES算法实现示例代码:
```python
import numpy as np
from scipy.optimize import minimize
def cma_es(func, x0, sigma, popsize, maxiter):
# 初始化参数
D = len(x0)
x_mean = x0
C = np.eye(D)
sigma = sigma
weights = np.log(popsize/2+1) - np.log(np.arange(1,popsize+1))
mu = int(popsize/2)
weights /= np.sum(weights)
mueff = np.sum(weights)**2/np.sum(weights**2)
cc = (4+mueff/D)/(D+4+2*mueff/D)
cs = (mueff+2)/(D+mueff+5)
c1 = 2/((D+1.3)**2+mueff)
cmu = min(1-c1, 2*(mueff-2+1/mueff)/((D+2)**2+mueff))
damps = 1+2*max(0, np.sqrt((mueff-1)/(D+1))-1)+cs
pc = np.zeros(D)
ps = np.zeros(D)
B = np.eye(D)
D = np.ones(D)
BD = np.dot(B,np.diag(D))
C = np.dot(BD,BD.T)
eigeneval = 0
chiN = np.sqrt(D.shape[0])*(1-1/(4*D.shape[0])+1/(21*(D.shape[0]**2)))
# 迭代寻优
for i in range(maxiter):
# 生成种群
arz = np.random.randn(D.shape[0], popsize)
arx = x_mean.reshape(-1,1) + sigma*(np.dot(BD, arz))
arfitness = np.zeros(popsize)
for j in range(popsize):
arfitness[j] = func(arx[:,j])
# 更新x_mean
parent_indices = np.argsort(arfitness)[:mu]
x_mean = np.dot(arx[:,parent_indices], weights)
# 更新进化路径
ps = (1-cs)*ps + np.sqrt(cs*(2-cs)*mueff)*(np.dot(B, x_mean-x_old)/sigma)
hsig = np.linalg.norm(ps)/np.sqrt(1-(1-cs)**(2*(i+1))) < (1.4+2/(D.shape[0]+1))*chiN
pc = (1-cc)*pc + hsig*np.sqrt(cc*(2-cc)*mueff)*(x_mean-x_old)/sigma
# 更新协方差矩阵
artmp = arx[:,parent_indices]-x_old.reshape(-1,1)
C = (1-c1-cmu) * C + c1 * np.outer(pc,pc) + cmu * np.dot(np.dot(artmp, np.diag(weights)), artmp.T)
eigeneval += mu
if eigeneval > popsize/(c1+cmu)/D.shape[0]/10:
eigeneval = 0
C = np.triu(C) + np.triu(C,1).T
D, B = np.linalg.eig(C)
D = np.sqrt(D)
BD = np.dot(B, np.diag(D))
# 更新步长
sigma *= np.exp((cs/damps)*(np.linalg.norm(ps)/chiN-1))
# 判断是否收敛
if arfitness[parent_indices[0]] < 1e-10:
break
x_old = x_mean
# 输出结果
res = minimize(func, x0)
return res.x
# 测试
def f(x):
return np.sum(x**2)
x0 = np.array([1,2,3])
sigma = 0.1
popsize = 10
maxiter = 100
result = cma_es(f, x0, sigma, popsize, maxiter)
print(result)
```
注意,在上面的代码中,目标函数需要传入一个numpy数组,而不是一个标量。另外,这里使用了scipy库中的minimize函数来检验最终的优化结果。
阅读全文