栈编码器结合LSTM参数预测案例代码 pytorch
时间: 2023-06-30 21:08:24 浏览: 87
以下是一个使用栈编码器和LSTM进行参数预测的简单示例代码,使用PyTorch实现:
```python
import torch
import torch.nn as nn
class StackLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(StackLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.stack_lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, h, c):
out, (h, c) = self.stack_lstm(x, (h, c))
out = self.fc(out[:, -1, :])
return out, (h, c)
input_size = 1
hidden_size = 64
num_layers = 2
output_size = 1
seq_len = 20
batch_size = 1
learning_rate = 0.001
num_epochs = 1000
x = torch.randn(seq_len, batch_size, input_size)
y = torch.randn(batch_size, output_size)
model = StackLSTM(input_size, hidden_size, num_layers, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
h = torch.zeros(num_layers, batch_size, hidden_size)
c = torch.zeros(num_layers, batch_size, hidden_size)
outputs = []
for i in range(seq_len):
out, (h, c) = model(x[i], h, c)
outputs.append(out)
loss = criterion(outputs[-1], y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# Test the model
with torch.no_grad():
h = torch.zeros(num_layers, batch_size, hidden_size)
c = torch.zeros(num_layers, batch_size, hidden_size)
test_input = torch.randn(seq_len, batch_size, input_size)
test_output = torch.randn(batch_size, output_size)
predicted_output = []
for i in range(seq_len):
out, (h, c) = model(test_input[i], h, c)
predicted_output.append(out)
test_loss = criterion(predicted_output[-1], test_output)
print(f'Test Loss: {test_loss.item():.4f}')
```
在这个示例中,我们使用一个具有2个LSTM层的栈编码器来预测一个具有1个输入和1个输出的简单序列。我们使用均方误差损失函数和Adam优化器进行训练,并在每个epoch结束后输出训练损失。在测试阶段,我们生成一个新的序列来测试模型,并计算测试损失。
阅读全文