LSTM+编码器 pytorch代码案例实战
时间: 2023-07-01 19:09:56 浏览: 119
以下是一个基于LSTM和编码器的PyTorch代码案例实战:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
# 定义数据集
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
# 定义编码器
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
def forward(self, x):
# 初始化隐藏层状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# LSTM前向传播
out, _ = self.lstm(x, (h0, c0))
return out[:, -1, :]
# 定义超参数
input_size = 10
hidden_size = 20
num_layers = 2
batch_size = 32
learning_rate = 0.001
num_epochs = 10
# 生成随机数据
data = np.random.randn(100, 50, input_size)
dataset = MyDataset(data)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义模型、损失函数和优化器
model = Encoder(input_size, hidden_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, inputs in enumerate(dataloader):
inputs = inputs.float()
outputs = model(inputs)
loss = criterion(outputs, torch.zeros(batch_size, hidden_size))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(dataset)//batch_size, loss.item()))
```
该代码实现了一个简单的LSTM编码器,并使用随机数据进行训练。在训练过程中,每10个batch打印一次损失值。你可以根据自己的需求修改超参数和数据集,以适应不同的应用场景。
阅读全文