帮我用pytorch搭建一个添加SE注意力模块的vgg16卷积神经网络的代码
时间: 2023-03-29 12:02:06 浏览: 126
杭电人工智能导论课程验收作业-完成一个卷积神经网络的修改,加入残差模块,加入注意力机制+源代码+文档说明
好的,我可以回答这个问题。以下是使用 PyTorch 搭建 VGG16 卷积神经网络并添加 SE 注意力模块的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SEBlock(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(in_channels, in_channels // reduction_ratio)
self.fc2 = nn.Linear(in_channels // reduction_ratio, in_channels)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = F.relu(self.fc1(y))
y = self.fc2(y).sigmoid().view(b, c, 1, 1)
return x * y
class VGG16(nn.Module):
def __init__(self, num_classes=100):
super(VGG16, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
self.se_block1 = SEBlock(64)
self.se_block2 = SEBlock(128)
self.se_block3 = SEBlock(256)
self.se_block4 = SEBlock(512)
self.se_block5 = SEBlock(512)
def forward(self, x):
x = self.se_block1(self.features(x))
x = self.se_block2(self.features(x))
x = self.se_block3(self.features(x))
x = self.se_block4(self.features(x))
x = self.se_block5(self.features(x))
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
这个代码实现了一个带有 SE 注意力模块的 VGG16 卷积神经网络。SE 注意力模块可以增强网络对重要特征的关注,从而提高网络的性能。
阅读全文