手写数字识别深度学习
时间: 2023-08-01 18:15:00 浏览: 131
手写数字识别是深度学习中的一个常见任务。在这个任务中,我们使用深度神经网络(DNN)或LeNet模型来对手写数字进行识别。我们使用经典的手写数字识别数据集MNIST,该数据集包含60000个训练样本和10000个测试样本。每个样本都是一个28x28像素的图像,对应着0到9这10个数字的标签。\[2\]
在实验中,我们首先需要准备工作,包括设备和库的版本。例如,我们可以使用GTX1650显卡,tensorflow-gpu版本为2.4.0,keras版本为2.4.3,Python版本为3.7.3。然后,我们下载MNIST数据集作为我们的训练和测试数据。\[1\]
接下来,我们可以构建DNN模型或LeNet模型来进行手写数字识别实验。我们可以使用训练集对模型进行训练,并使用验证集进行模型的验证和调优。最后,我们可以使用测试集对模型进行评估。\[2\]
在实验过程中,我们可以打印出传入网络的图像尺寸,以确保数据集被正确传入网络。\[3\]
总结来说,手写数字识别是一个使用深度学习模型对手写数字进行自动识别的任务,我们可以使用DNN模型或LeNet模型,并使用MNIST数据集进行训练和测试。
#### 引用[.reference_title]
- *1* *3* [【深度学习实战—1】:基于Keras的手写数字识别(非常详细、代码开源)](https://blog.csdn.net/qq_42856191/article/details/121420268)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [深度学习(手写数字识别)](https://blog.csdn.net/weixin_65089713/article/details/123869254)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文