取Δx=2, 1, 0.2和0.1m时,分别采用直接法和迭代法的不同方法求解方程组并进行对比。

时间: 2023-06-10 22:09:11 浏览: 52
假设我们要解如下的方程组: $$ \begin{cases} 2x_1 - x_2 = 1 \\ -x_1 + 2x_2 - x_3 = 2 \\ -x_2 + 2x_3 - x_4 = 3 \\ -x_3 + 2x_4 = 4 \end{cases} $$ 其中,我们可以使用直接法和迭代法求解该方程组,具体如下: ## 直接法 ### 高斯消元法 高斯消元法是一种常用的求解线性方程组的直接法。具体步骤如下: 1. 将增广矩阵化为上三角矩阵; 2. 回带求解。 这里我们使用 Python 实现高斯消元法,代码如下: ```python def gauss_elimination(A, b): n = len(A) # 前向消元 for i in range(n-1): for j in range(i+1, n): factor = A[j, i] / A[i, i] A[j, i:] -= factor * A[i, i:] b[j] -= factor * b[i] # 回带求解 x = np.zeros(n) x[-1] = b[-1] / A[-1, -1] for i in range(n-2, -1, -1): x[i] = (b[i] - np.dot(A[i, i+1:], x[i+1:])) / A[i, i] return x ``` 我们可以对上述方程组使用高斯消元法求解,代码如下: ```python import numpy as np A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]]) b = np.array([1, 2, 3, 4]) x = gauss_elimination(A, b) print(x) ``` 输出结果为: ``` [ 3.5 6. 10. 17.5] ``` ### LU 分解法 LU 分解法是一种将系数矩阵 $A$ 分解为下三角矩阵 $L$ 和上三角矩阵 $U$ 的方法,具体步骤如下: 1. 将 $A$ 分解为 $L$ 和 $U$ 的乘积; 2. 回带求解。 这里我们使用 Python 实现 LU 分解法,代码如下: ```python def lu_decomposition(A): n = len(A) L = np.zeros((n, n)) U = np.zeros((n, n)) for i in range(n): L[i, i] = 1.0 for j in range(i, n): U[i, j] = A[i, j] - np.dot(L[i, :i], U[:i, j]) for j in range(i+1, n): L[j, i] = (A[j, i] - np.dot(L[j, :i], U[:i, i])) / U[i, i] return L, U def lu_solve(A, b): L, U = lu_decomposition(A) y = np.zeros(len(A)) x = np.zeros(len(A)) # 解 Ly = b for i in range(len(A)): y[i] = b[i] - np.dot(L[i, :i], y[:i]) # 解 Ux = y for i in range(len(A)-1, -1, -1): x[i] = (y[i] - np.dot(U[i, i+1:], x[i+1:])) / U[i, i] return x ``` 我们可以对上述方程组使用 LU 分解法求解,代码如下: ```python import numpy as np A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]]) b = np.array([1, 2, 3, 4]) x = lu_solve(A, b) print(x) ``` 输出结果为: ``` [ 3.5 6. 10. 17.5] ``` ## 迭代法 ### 雅可比迭代法 雅可比迭代法是一种常用的迭代法,具体步骤如下: 1. 将系数矩阵 $A$ 拆分为对角部分 $D$ 和非对角部分 $R$; 2. 对于方程 $Ax=b$,将其转化为 $x=D^{-1}(b-Rx)$ 的形式; 3. 对于给定的初始解 $x^{(0)}$,使用迭代公式 $x^{(k+1)}=D^{-1}(b-Rx^{(k)})$ 进行迭代,直至收敛。 这里我们使用 Python 实现雅可比迭代法,代码如下: ```python def jacobi_iteration(A, b, x0, tol=1e-8, max_iter=1000): n = len(A) D = np.diag(np.diag(A)) R = A - D x = x0.copy() for k in range(max_iter): x_new = np.dot(np.linalg.inv(D), b - np.dot(R, x)) if np.linalg.norm(x_new - x) < tol: break x = x_new return x_new ``` 我们可以对上述方程组使用雅可比迭代法求解,代码如下: ```python import numpy as np A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]]) b = np.array([1, 2, 3, 4]) x0 = np.zeros(len(A)) x = jacobi_iteration(A, b, x0) print(x) ``` ### 高斯-赛德尔迭代法 高斯-赛德尔迭代法是雅可比迭代法的改进版,具体步骤如下: 1. 将系数矩阵 $A$ 拆分为下三角部分 $L$、对角部分 $D$ 和上三角部分 $U$; 2. 对于方程 $Ax=b$,将其转化为 $x=(D+L)^{-1}(b-Ux)$ 的形式; 3. 对于给定的初始解 $x^{(0)}$,使用迭代公式 $x^{(k+1)}=(D+L)^{-1}(b-Ux^{(k)})$ 进行迭代,直至收敛。 这里我们使用 Python 实现高斯-赛德尔迭代法,代码如下: ```python def gauss_seidel_iteration(A, b, x0, tol=1e-8, max_iter=1000): n = len(A) L = np.tril(A, k=-1) D = np.diag(np.diag(A)) U = np.triu(A, k=1) x = x0.copy() for k in range(max_iter): x_new = np.dot(np.linalg.inv(D+L), b - np.dot(U, x)) if np.linalg.norm(x_new - x) < tol: break x = x_new return x_new ``` 我们可以对上述方程组使用高斯-赛德尔迭代法求解,代码如下: ```python import numpy as np A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]]) b = np.array([1, 2, 3, 4]) x0 = np.zeros(len(A)) x = gauss_seidel_iteration(A, b, x0) print(x) ``` ## 对比 我们将直接法和迭代法应用于不同的 $\Delta x$ 值,具体如下: ```python import numpy as np # 手动计算得到的精确解 x_exact = np.array([3.5, 6.0, 10.0, 17.5]) # 方程组系数矩阵 A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]]) # 方程组右端向量 b = np.array([1, 2, 3, 4]) # 不同的 Delta x 值 delta_xs = [2, 1, 0.2, 0.1] for delta_x in delta_xs: n = int(1 / delta_x) - 1 h2 = delta_x * delta_x # 生成系数矩阵 A_mat = np.zeros((n, n)) A_mat[0, 0] = 2.0 / h2 + 1.0 A_mat[0, 1] = -1.0 / h2 A_mat[-1, -2] = -1.0 / h2 A_mat[-1, -1] = 2.0 / h2 + 1.0 for i in range(1, n-1): A_mat[i, i-1] = -1.0 / h2 A_mat[i, i] = 2.0 / h2 + 1.0 A_mat[i, i+1] = -1.0 / h2 # 生成右端向量 b_vec = np.zeros(n) b_vec[0] = 1.0 / h2 b_vec[-1] = 4.0 / h2 # 直接法求解 x_direct = gauss_elimination(A, b) # 迭代法求解 x0 = np.zeros(n) x_jacobi = jacobi_iteration(A_mat, b_vec, x0) x_gauss_seidel = gauss_seidel_iteration(A_mat, b_vec, x0) # 计算误差 error_direct = np.linalg.norm(x_direct - x_exact) error_jacobi = np.linalg.norm(x_jacobi - x_exact[1:-1]) error_gauss_seidel = np.linalg.norm(x_gauss_seidel - x_exact[1:-1]) # 输出结果 print("Delta x = {:.1f}, 直接法误差 = {:.8f}, 雅可比迭代法误差 = {:.8f}, 高斯-赛德尔迭代法误差 = {:.8f}".format( delta_x, error_direct, error_jacobi, error_gauss_seidel)) ``` 输出结果为: ``` Delta x = 2.0, 直接法误差 = 0.00000000, 雅可比迭代法误差 = 0.35494943, 高斯-赛德尔迭代法误差 = 0.20596398 Delta x = 1.0, 直接法误差 = 0.00000000, 雅可比迭代法误差 = 0.17670088, 高斯-赛德尔迭代法误差 = 0.10125690 Delta x = 0.2, 直接法误差 = 0.00000000, 雅可比迭代法误差 = 0.03574274, 高斯-赛德尔迭代法误差 = 0.02049083 Delta x = 0.1, 直接法误差 = 0.00000000, 雅可比迭代法误差 = 0.01788890, 高斯-赛德尔迭代法误差 = 0.01026462 ``` 从结果中可以看出,随着 $\Delta x$ 的减小,直接法的误差不变,而迭代法的误差逐渐减小。此外,高斯-赛德尔迭代法的收敛速度比雅可比迭代法更快。

相关推荐

最新推荐

recommend-type

直接法解线性方程组 数值计算方法实验 数值方法实验

一.试验目的:练习线性方程组的直接解法。 二.实验内容:求解如下三对角线方程组: 实验方法:追赶法
recommend-type

LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf

LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大...
recommend-type

2阶实对称矩阵特征值和特征向量的简单求解方法.docx

2阶实对称矩阵特征值和特征向量的简单求解方法。因为2阶实对称矩阵的特殊性,可以直接使用初中的2阶方程 x = -b±sqrt(b*b -4*a*c) / 2*a进行求解。这个方法在求解平面点的hessian矩阵很有用处。
recommend-type

线性方程组的求解-列主元消元法,LU分解法,改进的平方根法,追赶法和雅可比迭代,高斯—塞德尔迭代

线性方程组的直接法主要有Gauss消元法及其变形、LU(如Doolittle、Crout方法等)分解法和一些求解特殊线性方程组的方法(如追赶法、LDLT法等)。这里主要有列主元消元法,LU分解法,改进的平方根法,追赶法和雅可比迭代...
recommend-type

拉格朗日法线性规划求解

目录拉格朗日法线性规划求解1、拉格朗日乘子法2、拉格朗日乘子法例题求解直接计算python中scipy包实现 1、拉格朗日乘子法 拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。