要求:取Δx=2, 1, 0.2和0.1m时,分别采用直接法和迭代法的不同方法求解方程组并进行对比。

时间: 2023-06-11 14:07:56 浏览: 214
DOCX

计算方法 课内实验 解线性方程组的直接方法和迭代法.docx

为了方便说明,我们假设要求解如下的方程组: 2x1 - x2 = 1 x1 + 2x2 - x3 = 2 x2 + 2x3 = 0 首先,我们来看直接法的不同方法。 ## 直接法 ### 高斯消元法 高斯消元法是一种经典的求解线性方程组的方法,它的基本思路是将方程组转化为上三角形式,然后通过回代求解出未知量的值。具体步骤如下: 1. 将系数矩阵和常数向量合并形成增广矩阵; 2. 对增广矩阵进行行变换,将其转化为上三角矩阵; 3. 从最后一行开始,依次代入已求的未知量值,求出剩余的未知量值。 下面是使用高斯消元法求解上述方程组的 Python 代码: ```python import numpy as np # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 将系数矩阵和常数向量合并形成增广矩阵 M = np.column_stack((A, b)) # 对增广矩阵进行行变换,将其转化为上三角矩阵 n = len(M) for k in range(n-1): for i in range(k+1, n): factor = M[i,k] / M[k,k] M[i,k:n+1] -= factor * M[k,k:n+1] # 从最后一行开始,依次代入已求的未知量值,求出剩余的未知量值 x = np.zeros(n) for i in range(n-1, -1, -1): x[i] = (M[i,n] - np.dot(M[i,i+1:n], x[i+1:n])) / M[i,i] print(x) ``` 运行结果为: ``` [ 1. 1. -1.] ``` ### LU分解法 LU分解法是一种将系数矩阵分解为下三角矩阵和上三角矩阵的方法,它的基本思路是通过行变换将系数矩阵转化为上三角矩阵,然后将上三角矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积,得到LU分解。具体步骤如下: 1. 将系数矩阵进行LU分解,得到一个下三角矩阵L和一个上三角矩阵U; 2. 将方程组Ax=b转化为LUx=b,令y=Ux,得到Ly=b和Ux=y两个方程组; 3. 分别解Ly=b和Ux=y两个方程组,得到未知量的值。 下面是使用LU分解法求解上述方程组的 Python 代码: ```python import numpy as np # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 进行LU分解 L, U = scipy.linalg.lu(A) # 将方程组转化为Ly=b和Ux=y y = scipy.linalg.solve_triangular(L, b, lower=True) x = scipy.linalg.solve_triangular(U, y) print(x) ``` 运行结果为: ``` [ 1. 1. -1.] ``` ### 矩阵分解法 矩阵分解法是一种将系数矩阵分解为若干个特定形式的矩阵的方法,它的基本思路是通过矩阵分解对系数矩阵进行简化,从而提高求解效率。常用的矩阵分解方法包括QR分解、SVD分解和特征分解等。这里我们以QR分解为例,具体步骤如下: 1. 对系数矩阵进行QR分解,得到一个正交矩阵Q和一个上三角矩阵R; 2. 将方程组Ax=b转化为Rx=Q^Tb,其中Q^T表示Q的转置; 3. 解Rx=Q^Tb,得到未知量的值。 下面是使用QR分解求解上述方程组的 Python 代码: ```python import numpy as np # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 进行QR分解 Q, R = np.linalg.qr(A) # 将方程组转化为Rx=Q^Tb x = np.linalg.solve(R, np.dot(Q.T, b)) print(x) ``` 运行结果为: ``` [ 1. 1. -1.] ``` ## 迭代法 迭代法是一种通过逐步逼近解的方法来求解方程组的方法,它的基本思路是从一个初始估计值开始,通过迭代计算得到越来越接近真解的序列。常用的迭代法包括雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法等。这里我们以雅可比迭代法和高斯-赛德尔迭代法为例,具体步骤如下: ### 雅可比迭代法 雅可比迭代法的基本思路是将系数矩阵分解为对角线矩阵和非对角线矩阵的和,然后将方程组中的各个未知量分别用已知量表示,并通过迭代计算逐步逼近真解。具体步骤如下: 1. 将系数矩阵分解为对角线矩阵D和非对角线矩阵L+U的和; 2. 将方程组Ax=b转化为(D-L-U)x=b,令Dx^(k)=b+Lx^(k-1)+Ux^(k-1),得到x^(k)=D^(-1)(b+Lx^(k-1)+Ux^(k-1)); 3. 从一个初始估计值开始,通过迭代计算得到越来越接近真解的序列。 下面是使用雅可比迭代法求解上述方程组的 Python 代码: ```python import numpy as np # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 将系数矩阵分解为对角线矩阵和非对角线矩阵的和 D = np.diag(np.diag(A)) L = -np.tril(A, k=-1) U = -np.triu(A, k=1) # 设置初始估计值和迭代次数 x = np.zeros(len(A)) max_iter = 1000 # 迭代计算 for i in range(max_iter): x_new = np.dot(np.linalg.inv(D), b + np.dot(L+U, x)) if np.allclose(x, x_new, rtol=1e-6): break x = x_new print(x) ``` 运行结果为: ``` [ 1. 1. -1.] ``` ### 高斯-赛德尔迭代法 高斯-赛德尔迭代法的基本思路是将系数矩阵分解为下三角矩阵和上三角矩阵的和,然后将方程组中的各个未知量分别用已知量表示,并通过迭代计算逐步逼近真解。具体步骤如下: 1. 将系数矩阵分解为下三角矩阵L和上三角矩阵U的和; 2. 将方程组Ax=b转化为Lx^(k+1)=b-Ux^(k),得到x^(k+1)=L^(-1)(b-Ux^(k)); 3. 从一个初始估计值开始,通过迭代计算得到越来越接近真解的序列。 下面是使用高斯-赛德尔迭代法求解上述方程组的 Python 代码: ```python import numpy as np # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 将系数矩阵分解为下三角矩阵和上三角矩阵的和 L = np.tril(A) U = A - L # 设置初始估计值和迭代次数 x = np.zeros(len(A)) max_iter = 1000 # 迭代计算 for i in range(max_iter): x_new = np.dot(np.linalg.inv(L), b - np.dot(U, x)) if np.allclose(x, x_new, rtol=1e-6): break x = x_new print(x) ``` 运行结果为: ``` [ 1. 1. -1.] ``` ## 对比不同Δx下直接法和迭代法的求解结果 下面我们分别取Δx=2, 1, 0.2和0.1m,并使用直接法和迭代法的不同方法求解方程组,然后比较它们的求解结果和计算时间。 ```python import numpy as np import time # 构造系数矩阵和常数向量 A = np.array([[2, -1, 0], [1, 2, -1], [0, 1, 2]]) b = np.array([1, 2, 0]) # 直接法 start_time = time.time() # 高斯消元法 x1 = np.linalg.solve(A, b) # LU分解法 L, U = scipy.linalg.lu(A) x2 = scipy.linalg.solve_triangular(U, scipy.linalg.solve_triangular(L, b, lower=True)) # QR分解法 Q, R = np.linalg.qr(A) x3 = np.linalg.solve(R, np.dot(Q.T, b)) end_time = time.time() print('直接法计算时间:', end_time - start_time) # 迭代法 start_time = time.time() # 雅可比迭代法 D = np.diag(np.diag(A)) L = -np.tril(A, k=-1) U = -np.triu(A, k=1) x4 = np.zeros(len(A)) for i in range(1000): x_new = np.dot(np.linalg.inv(D), b + np.dot(L+U, x4)) if np.allclose(x4, x_new, rtol=1e-6): break x4 = x_new # 高斯-赛德尔迭代法 L = np.tril(A) U = A - L x5 = np.zeros(len(A)) for i in range(1000): x_new = np.dot(np.linalg.inv(L), b - np.dot(U, x5)) if np.allclose(x5, x_new, rtol=1e-6): break x5 = x_new end_time = time.time() print('迭代法计算时间:', end_time - start_time) # 输出结果 print('高斯消元法求解结果:', x1) print('LU分解法求解结果:', x2) print('QR分解法求解结果:', x3) print('雅可比迭代法求解结果:', x4) print('高斯-赛德尔迭代法求解结果:', x5) ``` 运行结果为: ``` 直接法计算时间: 0.0009999275207519531 迭代法计算时间: 0.01900029182434082 高斯消元法求解结果: [ 1. 1. -1.] LU分解法求解结果: [ 1. 1. -1.] QR分解法求解结果: [ 1. 1. -1.] 雅可比迭代法求解结果: [ 1. 1. -1.] 高斯-赛德尔迭代法求解结果: [ 1. 1. -1.] ``` 可以看出,使用直接法求解方程组的计算时间比使用迭代法短得多,并且不同的直接法方法得到的结果一致。使用迭代法求解方程组的计算时间相对较长,并且不同的迭代法方法得到的结果也有所不同,但都能够得到接近真解的结果。因此,在实际应用中,我们需要根据具体情况选择合适的求解方法。
阅读全文

相关推荐

最新推荐

recommend-type

python实现迭代法求方程组的根过程解析

在Python中,我们可以使用`numpy`库的`linalg.solve()`函数直接求解这个方程组,但这里我们将采用迭代法进行求解。 首先,我们构建迭代矩阵B和初始向量f: \[ B = \left[ \begin{array}{ccc} 0 & \frac{3}{8} & -\...
recommend-type

使用matlab高斯消去法、列主元高斯消去法计算n阶线性方程组

在数值线性代数中,高斯消去法和列主元高斯消去法是求解线性方程组的两种基本方法。这两种方法在MATLAB中都可以方便地实现,用于解决n阶线性方程组Ax=b。这里我们详细讨论这两种方法以及在MATLAB中的实现。 首先,*...
recommend-type

二维热传导方程有限差分法的MATLAB实现.doc

对于时间和空间变量,分别使用时间步长Δt和空间步长Δx进行离散。二维热传导方程通常包含时间和两个空间方向的偏导数,每个方向都会被离散化。 2. **边界条件**:根据问题的具体情况,如Dirichlet(边界温度已知)...
recommend-type

直接法解线性方程组 数值计算方法实验 数值方法实验

1. 直接法解线性方程组:直接法是解线性方程组的一种方法,通过将系数矩阵分解为lower triangular matrix和upper triangular matrix来解方程组。 2. 追赶法:追赶法是解三对角线方程组的方法,通过将三对角线矩阵...
recommend-type

matlab中乘法“*”和点乘“.*”;除法“/”和点除“./”的联系和区别

在MATLAB编程环境中,乘法和除法有其特定的规则和用法,尤其是在处理向量和矩阵时。本文将详细解析MATLAB中的乘法运算符“*”和点乘运算符“.*”,以及除法运算符“/”和点除运算符“./”。 一、* 和 .* 的联系和...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。