matlab求一维热传导方程向前Euler法数值解代码
时间: 2023-07-02 16:23:26 浏览: 153
以下是使用向前Euler法求解一维热传导方程的Matlab代码:
```
% 定义参数
L = 1; % 区间长度
T = 0.1; % 时间长度
N = 50; % 离散空间步数
M = 100; % 离散时间步数
alpha = 0.01; % 热扩散系数
% 计算步长
dx = L / N;
dt = T / M;
% 初始化温度分布
u = zeros(N+1, 1);
u(1) = 100; % 左端点温度
u(N+1) = 0; % 右端点温度
% 迭代求解
for j = 1:M
unew = zeros(N+1, 1);
unew(1) = 100; % 左端点温度
unew(N+1) = 0; % 右端点温度
for i = 2:N
unew(i) = u(i) + alpha * dt / dx^2 * (u(i-1) - 2 * u(i) + u(i+1));
end
u = unew;
end
% 画图显示结果
x = linspace(0, L, N+1);
plot(x, u);
xlabel('位置');
ylabel('温度');
```
在上面的代码中,我们使用向前Euler法对一维热传导方程进行数值求解。具体来说,我们将区间[0,1]均匀地离散成N个点,将时间区间[0,0.1]均匀地离散成M个点,然后根据向前Euler法的公式进行迭代求解。最终,我们可以得到每个时刻的温度分布,并且可以通过画图来显示结果。
阅读全文
相关推荐

















