self.net.load_state_dict(torch.load('logs/ep100-loss0.067-val_loss0.058.pth',map_location=device),False)
时间: 2024-04-13 21:25:07 浏览: 187
您好!关于您的问题,您正在尝试加载一个名为'ep100-loss0.067-val_loss0.058.pth'的模型权重文件,并将其应用于您的网络。使用`torch.load()`函数可以加载模型权重文件,其中的参数`map_location`用于指定设备。
在这里,您将权重加载到`self.net`网络中,但是由于我无法访问您的代码,所以不能提供太多帮助。请确保您的模型架构与加载的权重相匹配,并且设备与训练时的设备一致。
如果您有其他问题,可以继续提问。
相关问题
这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")
以下是加入 Test Loss 功能后的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device):
super().__init__()
self.device = device
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.num_directions = 1 # 单向LSTM
self.batch_size = batch_size
self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
self.linear = nn.Linear(65536, self.output_size)
def forward(self, input_seq):
h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device)
c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device)
output, _ = self.lstm(input_seq, (h_0, c_0))
pred = self.linear(output.contiguous().view(self.batch_size, -1))
return pred
if __name__ == '__main__':
# 加载已保存的模型参数
saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth'
device = 'cuda:0'
lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device=device).to(device)
state_dict = torch.load(saved_model_path)
lstm_model.load_state_dict(state_dict)
# 加载测试数据集
test_dataset = ECGDataset(X_test_df.to_numpy())
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=0, drop_last=False)
# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4)
# 开始训练
for epoch in range(200000):
print(f'epoch:{epoch}')
lstm_model.train()
epoch_bar = tqdm(dataloader)
for x, y in epoch_bar:
optimizer.zero_grad()
x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor))
loss = loss_fn(x_out, y.long().to(device))
loss.backward()
epoch_bar.set_description(f'loss:{loss.item():.4f}')
optimizer.step()
# 计算测试集上的平均损失
test_loss = 0.0
lstm_model.eval()
with torch.no_grad():
for x, y in test_loader:
x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor))
loss = loss_fn(x_out, y.long().to(device))
test_loss += loss.item() * x.size(0)
test_loss /= len(test_dataset)
print(f'Test Loss: {test_loss:.4f}')
if epoch % 100 == 0 or epoch == epoch - 1:
torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth")
print("权重成功保存一次")
```
在这个代码中,我们首先加载了测试数据集 `test_dataset` 和测试数据加载器 `test_loader`。在每个 epoch 完成后,我们计算测试集上的平均损失值。我们使用 `lstm_model.eval()` 将模型设为评估模式,并利用 `torch.no_grad()` 避免计算梯度,以加速计算。最后,我们输出测试集上的平均损失值。
model.load_state_dict
(model_state_dict)
This function loads the saved state dictionary of a PyTorch model into the model. The argument `model_state_dict` is a dictionary containing the saved state of the model, which typically includes the weights, biases, and other parameters. The function updates the model with the saved state dictionary, allowing you to resume training or use the saved model for inference.
Example usage:
```python
import torch
# define a simple neural network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = torch.nn.Linear(10, 5)
self.fc2 = torch.nn.Linear(5, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# create an instance of the network
net = Net()
# save the state dictionary of the model
torch.save(net.state_dict(), 'model.pth')
# create a new instance of the network
net2 = Net()
# load the saved state dictionary into the new network
net2.load_state_dict(torch.load('model.pth'))
# the two networks should have the same state now
assert net.state_dict() == net2.state_dict()
```
阅读全文