你写一份实例分割读取数据集的代码
时间: 2024-02-11 16:05:52 浏览: 57
好的,以下是一个使用Mask R-CNN模型进行实例分割的示例代码,包括如何读取数据集:
```
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
# 导入Mask R-CNN库
ROOT_DIR = os.path.abspath("../")
sys.path.append(ROOT_DIR) # 导入Mask R-CNN库的根目录
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.config import Config
# 配置数据集路径和类别
class MyConfig(Config):
NAME = "mydataset"
IMAGES_PER_GPU = 1
NUM_CLASSES = 1 + 2 # 背景+2种物体
STEPS_PER_EPOCH = 100
DETECTION_MIN_CONFIDENCE = 0.9
class MyDataset(utils.Dataset):
def load_mydataset(self, dataset_dir, subset):
self.add_class("mydataset", 1, "object1")
self.add_class("mydataset", 2, "object2")
# 读取训练集或验证集
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
# 读取所有图像文件名
filenames = os.listdir(dataset_dir)
# 添加图像和标注
for filename in filenames:
if not filename.endswith(".jpg"):
continue
image_path = os.path.join(dataset_dir, filename)
image = skimage.io.imread(image_path)
height, width = image.shape[:2]
self.add_image(
"mydataset",
image_id=filename,
path=image_path,
width=width, height=height,
annotations=annotations)
def load_mask(self, image_id):
# 读取对应图像的标注文件
info = self.image_info[image_id]
path = info['path']
mask_path = path[:-4] + "_mask.png"
mask = skimage.io.imread(mask_path)
# 创建一个包含所有物体的掩码
obj_mask = np.zeros([info["height"], info["width"], len(info["annotations"])],
dtype=np.uint8)
# 为每个物体创建一个单独的掩码
class_ids = []
for i, anno in enumerate(info["annotations"]):
class_id = self.class_names.index(anno['class'])
class_ids.append(class_id)
obj_mask[:, :, i:i + 1] = mask == i + 1
return obj_mask, np.array(class_ids, dtype=np.int32)
# 加载数据集
dataset_dir = "/path/to/dataset"
dataset = MyDataset()
dataset.load_mydataset(dataset_dir, "train")
dataset.prepare()
# 加载模型
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
model = modellib.MaskRCNN(mode="training", config=MyConfig(),
model_dir=MODEL_DIR)
# 开始训练模型
model.train(dataset, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=30,
layers='heads')
```
这段代码使用`MyDataset`类来读取数据集,其中`load_mydataset`函数用于读取图像和标注,`load_mask`函数用于读取标注并创建一个掩码。通过这些函数,数据集可以被加载到模型中进行训练和验证。
阅读全文