用梯度下降算法实现Logistic回归的L1正则化和L2正则化

时间: 2023-12-18 13:01:17 浏览: 32
对于Logistic回归的L1正则化,损失函数为: J(w) = -1/m * [sum(yi*log(h(xi)) + (1-yi)*log(1-h(xi))) + lambda * sum(abs(w))] 其中,yi是第i个样本的标签,h(xi)是该样本的预测概率,w是模型参数,lambda是正则化系数。可以使用梯度下降算法更新参数: w_j = w_j - alpha * (1/m * sum((h(xi)-yi)*xi_j) + lambda * sign(w_j)) 其中,alpha是学习率,sign(w_j)是w_j的符号函数,即当w_j>0时为1,w_j<0时为-1,w_j=0时为0。 对于Logistic回归的L2正则化,损失函数为: J(w) = -1/m * [sum(yi*log(h(xi)) + (1-yi)*log(1-h(xi))) + lambda/2 * sum(w^2)] 其中,yi是第i个样本的标签,h(xi)是该样本的预测概率,w是模型参数,lambda是正则化系数。可以使用梯度下降算法更新参数: w_j = w_j - alpha * (1/m * sum((h(xi)-yi)*xi_j) + lambda * w_j) 其中,alpha是学习率。注意,L2正则化中的正则化项是w的平方和,而不是绝对值和。
相关问题

分别用梯度下降算法实现Logistic回归的L1正则化和L2正则化

对于Logistic回归的L1正则化,损失函数为: J(w) = -1/m * [sum(yi*log(h(xi)) + (1-yi)*log(1-h(xi))) + lambda * sum(abs(w))] 其中,yi是第i个样本的标签,h(xi)是该样本的预测概率,w是模型参数,lambda是正则化系数。可以使用梯度下降算法更新参数: w_j = w_j - alpha * (1/m * sum((h(xi)-yi)*xi_j) + lambda * sign(w_j)) 其中,alpha是学习率,sign(w_j)是w_j的符号函数,即当w_j>0时为1,w_j<0时为-1,w_j=0时为0。 对于Logistic回归的L2正则化,损失函数为: J(w) = -1/m * [sum(yi*log(h(xi)) + (1-yi)*log(1-h(xi))) + lambda/2 * sum(w^2)] 其中,yi是第i个样本的标签,h(xi)是该样本的预测概率,w是模型参数,lambda是正则化系数。可以使用梯度下降算法更新参数: w_j = w_j - alpha * (1/m * sum((h(xi)-yi)*xi_j) + lambda * w_j) 其中,alpha是学习率。注意,L2正则化中的正则化项是w的平方和,而不是绝对值和。 下面是使用Python实现Logistic回归的L1正则化和L2正则化的代码: ```python import numpy as np class LogisticRegression: def __init__(self, lr=0.1, num_iter=1000, fit_intercept=True, regularization=None, lambda_=0.1): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.regularization = regularization self.lambda_ = lambda_ def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def __l1_regularization(self, w): return self.lambda_ * np.abs(w[1:]).sum() def __l2_regularization(self, w): return self.lambda_ * np.sum(w[1:] ** 2) def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): z = np.dot(X, self.theta) h = self.__sigmoid(z) if self.regularization == 'l1': # L1正则化 grad = np.dot(X.T, (h - y)) / y.size + self.lambda_ * np.sign(self.theta) elif self.regularization == 'l2': # L2正则化 grad = np.dot(X.T, (h - y)) / y.size + self.lambda_ * self.theta else: grad = np.dot(X.T, (h - y)) / y.size self.theta -= self.lr * grad def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 其中,lr是学习率,num_iter是迭代次数,fit_intercept表示是否拟合截距,regularization表示正则化方法,lambda_是正则化系数。在fit方法中,通过判断regularization的取值,来实现L1正则化和L2正则化。在L1正则化中,使用np.sign函数计算符号函数,而在L2正则化中,直接对参数的平方和进行惩罚。在predict_prob方法中,对X进行截距拟合和sigmoid变换,返回预测概率。在predict方法中,对预测概率进行阈值处理,返回预测结果。

用梯度下降算法实现Logistic回归的L1正则化和L2正则化python代码

下面是用梯度下降算法实现Logistic回归的L1正则化和L2正则化的Python代码: ```python import numpy as np class LogisticRegression: def __init__(self, lr=0.1, num_iter=1000, fit_intercept=True, regularization=None, lambda_=0.1): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.regularization = regularization self.lambda_ = lambda_ def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def __l1_regularization(self, w): return self.lambda_ * np.abs(w[1:]).sum() def __l2_regularization(self, w): return self.lambda_ * np.sum(w[1:] ** 2) def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): z = np.dot(X, self.theta) h = self.__sigmoid(z) if self.regularization == 'l1': # L1正则化 grad = np.dot(X.T, (h - y)) / y.size + self.lambda_ * np.sign(self.theta) elif self.regularization == 'l2': # L2正则化 grad = np.dot(X.T, (h - y)) / y.size + self.lambda_ * self.theta else: grad = np.dot(X.T, (h - y)) / y.size self.theta -= self.lr * grad def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 其中,lr是学习率,num_iter是迭代次数,fit_intercept表示是否拟合截距,regularization表示正则化方法,lambda_是正则化系数。在fit方法中,通过判断regularization的取值,来实现L1正则化和L2正则化。在L1正则化中,使用np.sign函数计算符号函数,而在L2正则化中,直接对参数的平方和进行惩罚。在predict_prob方法中,对X进行截距拟合和sigmoid变换,返回预测概率。在predict方法中,对预测概率进行阈值处理,返回预测结果。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。