network = DeepConvNet() network.load_params("deep_convnet_params.pkl") # sampled = 10000 # 为了实现高速化 # x_test = x_test[:sampled] # t_test = t_test[:sampled] print("caluculate accuracy (float64) ... ") print(network.accuracy(x_test, t_test)) # 转换为float16型 x_test = x_test.astype(np.float16) for param in network.params.values(): param[...] = param.astype(np.float16) print("caluculate accuracy (float16) ... ") print(network.accuracy(x_test, t_test))
时间: 2024-04-03 22:32:15 浏览: 105
DeepCNN_Params.pkl
这段代码是一个使用DeepConvNet模型来测试图像分类准确率的例子。首先,使用`load_params()`方法加载预先训练好的模型参数,然后打印出使用`accuracy()`方法计算出的模型在测试数据集上的分类准确率。接下来,将测试数据转换为float16类型,并将模型参数也转换为float16类型,然后再次计算模型在测试数据集上的分类准确率。这个例子旨在展示使用float16类型可以提高模型的计算速度,但可能会降低模型的精度。
阅读全文