PYTHON UNET代码
时间: 2023-07-02 14:09:55 浏览: 158
以下是一个基于Python的UNet代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
def unet(input_size=(256, 256, 3)):
inputs = tf.keras.Input(input_size)
# Contracting Path
conv1 = layers.Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = layers.Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = layers.Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = layers.Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = layers.Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = layers.Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = layers.Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = layers.Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = layers.Dropout(0.5)(conv4)
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4)
# Bottom
conv5 = layers.Conv2D(1024, 3, activation='relu', padding='same')(pool4)
conv5 = layers.Conv2D(1024, 3, activation='relu', padding='same')(conv5)
drop5 = layers.Dropout(0.5)(conv5)
# Expansive Path
up6 = layers.Conv2DTranspose(512, 2, strides=(2, 2), padding='same')(drop5)
merge6 = layers.concatenate([drop4, up6], axis=3)
conv6 = layers.Conv2D(512, 3, activation='relu', padding='same')(merge6)
conv6 = layers.Conv2D(512, 3, activation='relu', padding='same')(conv6)
up7 = layers.Conv2DTranspose(256, 2, strides=(2, 2), padding='same')(conv6)
merge7 = layers.concatenate([conv3, up7], axis=3)
conv7 = layers.Conv2D(256, 3, activation='relu', padding='same')(merge7)
conv7 = layers.Conv2D(256, 3, activation='relu', padding='same')(conv7)
up8 = layers.Conv2DTranspose(128, 2, strides=(2, 2), padding='same')(conv7)
merge8 = layers.concatenate([conv2, up8], axis=3)
conv8 = layers.Conv2D(128, 3, activation='relu', padding='same')(merge8)
conv8 = layers.Conv2D(128, 3, activation='relu', padding='same')(conv8)
up9 = layers.Conv2DTranspose(64, 2, strides=(2, 2), padding='same')(conv8)
merge9 = layers.concatenate([conv1, up9], axis=3)
conv9 = layers.Conv2D(64, 3, activation='relu', padding='same')(merge9)
conv9 = layers.Conv2D(64, 3, activation='relu', padding='same')(conv9)
# Output
outputs = layers.Conv2D(1, 1, activation='sigmoid')(conv9)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
```
该代码实现了一个基本的 UNet 模型。在该模型中,输入是一个大小为 `(256, 256, 3)` 的图像,输出是一个大小为 `(256, 256, 1)` 的二值图像,表示原始图像中每个像素是否属于感兴趣的目标区域。模型包含一个收缩路径和一个扩张路径,中间有一个底部路径。在每个路径中,使用了一系列卷积层、池化层、dropout 层和转置卷积层进行特征提取和上采样。在模型的输出层中,使用了一个 sigmoid 激活函数将输出的值压缩到 0 到 1 之间。
阅读全文