yolov4各结构详解
时间: 2023-03-28 15:04:09 浏览: 120
Yolov4是一种目标检测算法,它包含了多个结构,包括骨干网络、特征金字塔、FPN、PAN、SPP、SAM、YOLOv3-tiny等。这些结构都有不同的作用,可以提高目标检测的准确率和速度。其中,骨干网络用于提取图像特征,特征金字塔用于处理不同尺度的目标,FPN和PAN用于融合不同层次的特征,SPP和SAM用于增加感受野,YOLOv3-tiny则是一种轻量级的目标检测模型。
相关问题
yolov4网络结构详解
YOLOv4是一种高效的目标检测算法,具有极高的实时性能和较低的计算复杂度。其网络结构主要由三个部分组成:骨干网络、特征金字塔和检测头。
首先是骨干网络,YOLOv4采用了CSPDarknet53作为其骨干网络,相比于以往的Darknet53,CSPDarknet53通过引入CSP(Cross Stage Partial)结构来提升网络的性能。CSP结构将输入特征图分为两部分,并在其中一部分上进行卷积操作,然后将结果与另一部分进行串联操作,这样可以减少计算量并保持信息传递的完整性。
其次是特征金字塔,特征金字塔由四个不同尺寸的特征图组成,分别用于检测不同大小的目标。为了生成这个金字塔,YOLOv4引入了Panet结构,即特征金字塔网络。Panet结构通过上采样和融合操作,将不同尺度的特征图进行融合,以便在不同尺度上进行目标检测。
最后是检测头,YOLOv4采用了三个并行的检测头,分别预测不同尺度的目标框。每个检测头输出相应的目标框、置信度和类别信息。为了提高检测精度,YOLOv4还使用了多尺度训练和数据增强技术,并引入了CIoU损失函数来优化边界框的预测。
总的来说,YOLOv4网络结构的设计充分考虑了骨干网络、特征金字塔和检测头的协同作用,通过引入CSP结构和Panet结构,以及采用多尺度训练和数据增强等策略,使得YOLOv4在目标检测任务上表现出了较高的准确性和实时性。
yolov5s网络结构详解
Yolov5s是一种用于目标检测的深度学习模型,其网络结构可以通过可视化图进行详解。Yolov5s的网络结构主要包括以下几个部分:输入层、主干网络、特征金字塔、预测头和输出层。
在Yolov5s中,输入层接受输入图像,并将其缩放到预定义的输入尺寸。接下来,主干网络是由一系列卷积层和残差块组成的,用于提取图像特征。这些特征经过特征金字塔模块处理,以获取不同尺度的特征图用于目标检测。
预测头是用来预测目标的位置和类别的。它由一系列卷积层和全连接层组成,将主干网络输出的特征图转化为边界框的位置和类别的预测。
最后,输出层将预测的结果进行后处理,如非极大值抑制(NMS),以去除重叠的边界框,并输出最终的目标检测结果。
需要注意的是,Yolov5s的网络结构可以通过调整超参数来适应不同的检测任务和计算资源。此外,还有其他几个版本的Yolov5,如Yolov5m、Yolov5l和Yolov5x,它们在网络结构上略有不同,但基本原理相同。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [【YOLOv5】详细讲解全过程](https://blog.csdn.net/u013066730/article/details/126068967)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文